設(shè)直線x+2y+4=0和圓x2+y2-2x-15=0相交于點(diǎn)A,B.
(1)求弦AB的垂直平分線方程;
(2)求弦AB的長(zhǎng).
分析:(1)求出圓的圓心為C(1,0),半徑r=4.根據(jù)垂徑定理,弦AB的垂直平分線經(jīng)過(guò)圓心C,由此加以計(jì)算即可得出AB的垂直平分線方程;
(2)利用點(diǎn)到直線的距離公式,算出圓心C(1,0)到直線x+2y+4=0的距離,再根據(jù)垂徑定理加以計(jì)算,可得弦AB的長(zhǎng).
解答:解:(1)∵圓x2+y2-2x-15=0化成標(biāo)準(zhǔn)方程得(x-1)2+y2=16,
∴圓心為C(1,0),半徑r=4.
∵直線x+2y+4=0和圓x2+y2-2x-15=0相交于點(diǎn)A、B,
∴設(shè)弦AB的垂直平分線為l:2x-y+m=0,
由垂徑定理,可知點(diǎn)C(1,0)在l上,得2×1-0+m=0,解之得m=-2.
因此,弦AB的垂直平分線方程為2x-y-2=0;
(2)圓心C(1,0)到直線x+2y+4=0的距離為:
d=
|1+2×0+4|
12+22
=
5

根據(jù)垂徑定理,得|AB|=2
r2-d2
=2
11
,即弦AB的長(zhǎng)等于2
11
點(diǎn)評(píng):本題給出直線與圓相交,求弦的中垂線方程并求弦的長(zhǎng)度.著重考查了圓的標(biāo)準(zhǔn)方程、點(diǎn)到直線的距離公式和直線與圓的位置關(guān)系等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)兩條直線l1:y=kx+2k+1和l2:x+2y-4=0的交點(diǎn)在第四象限,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)關(guān)于x,y的方程C:x2+y2-2x-3y+m=0.
(I)當(dāng)實(shí)數(shù)m為何值時(shí),方程C表示圓?
(II)若圓C與直線l:x+2y-4=0相交于M,N兩點(diǎn),且|MN|=
4
5
5
,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求過(guò)直線x+y+4=0與x-y+2=0的交點(diǎn),且平行于直線 x-2y=0的直線方程.
(2)設(shè)直線4x+3y+1=0和圓x2+y2-2x-3=0相交于點(diǎn)A、B,求弦AB的長(zhǎng)及其垂直平分線的方程.
(3)過(guò)點(diǎn)P(3,0)有一條直線l,它夾在兩條直線l1:2x-y-2=0與l2:x+y+3=0之間的線段恰被P點(diǎn)平分,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•浙江)設(shè)a∈R,則“a=1”是“直線l1:ax+2y-1=0與直線l2:x+2y+4=0平行的(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案