【題目】如圖,圓O是一半徑為10米的圓形草坪,為了滿足周邊市民跳廣場舞的需要,現規(guī)劃在草坪上建一個廣場,廣場形狀如圖中虛線部分所示的曲邊四邊形,其中A,B兩點在⊙O上,A,B,C,D恰是一個正方形的四個頂點.根據規(guī)劃要求,在A,B,C,D四點處安裝四盞照明設備,從圓心O點出發(fā),在地下鋪設4條到A,B,C,D四點線路OA,OB,OC,OD.
(1)若正方形邊長為10米,求廣場的面積;
(2)求鋪設的4條線路OA,OB,OC,OD總長度的最小值.
【答案】(1)100(平方米)(2)(米)
【解析】
(1)連接AB,廣場面積等于正方形面積加上弓形面積,計算得到答案.
(2)過O作OK⊥CD,垂足為K,過O作OH⊥AD(或其延長線),垂足為H,設∠OAD=θ(0<θ),OD,計算得到答案.
(1)連接AB,∵AB=10,∴正方形ABCD的面積為100,
又OA=OB=10,∴△AOB為正三角形,則,
而圓的面積為100π,∴扇形AOB的面積為,
又三角形AOB的面積為.∴弓形面積為,
則廣場面積為100(平方米);
(2)過O作OK⊥CD,垂足為K,過O作OH⊥AD(或其延長線),垂足為H,
設∠OAD=θ(0<θ),則OH=10sinθ,AH=10cosθ,
∴DH=|AD﹣AH|=|2OH﹣AH|=|20sinθ﹣10cosθ|,
∴OD.
∴當θ時,.
∴4條線路OA,OB,OC,OD總長度的最小值為(米).
科目:高中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD是邊長為2的菱形,∠ABC=60°,平面AEFC⊥平面ABCD,EF∥AC,AE=AB,AC=2EF.
(1)求證:平面BED⊥平面AEFC;
(2)若四邊形AEFC為直角梯形,且EA⊥AC,求二面角B-FC-D的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線的參數方程為(為參數).以原點為極點,軸的正半軸為極軸建立極坐標系,且曲線的極坐標方程為.
(1)寫出直線的普通方程與曲線的直角坐標方程;
(2)設直線上的定點在曲線外且其到上的點的最短距離為,試求點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應點為,圓柱表面上的點在左視圖上的對應點為,則在此圓柱側面上,從到的路徑中,最短路徑的長度為( )
A. B. C. D. 2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數方程為(為參數).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.
(Ⅰ)求直線的直角坐標方程與曲線的普通方程;
(Ⅱ)已知點設直線與曲線相交于兩點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線的參數方程為(其中為參數),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)若,求直線與曲線的交點的直角坐標;
(2)若點在曲線上,且到直線距離的最大值為,求直線的斜率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com