精英家教網 > 高中數學 > 題目詳情

【題目】如圖,圓O是一半徑為10米的圓形草坪,為了滿足周邊市民跳廣場舞的需要,現規(guī)劃在草坪上建一個廣場,廣場形狀如圖中虛線部分所示的曲邊四邊形,其中A,B兩點在⊙O上,A,B,C,D恰是一個正方形的四個頂點.根據規(guī)劃要求,在AB,CD四點處安裝四盞照明設備,從圓心O點出發(fā),在地下鋪設4條到A,B,C,D四點線路OAOB,OC,OD.

1)若正方形邊長為10米,求廣場的面積;

2)求鋪設的4條線路OA,OBOC,OD總長度的最小值.

【答案】1100(平方米)(2(米)

【解析】

1)連接AB,廣場面積等于正方形面積加上弓形面積,計算得到答案.

2)過OOKCD,垂足為K,過OOHAD(或其延長線),垂足為H,設∠OADθ0θ),OD,計算得到答案.

1)連接AB,∵AB10,∴正方形ABCD的面積為100,

OAOB10,∴△AOB為正三角形,則,

而圓的面積為100π,∴扇形AOB的面積為,

又三角形AOB的面積為.∴弓形面積為

則廣場面積為100(平方米);

2)過OOKCD,垂足為K,過OOHAD(或其延長線),垂足為H,

設∠OADθ0θ),則OH10sinθ,AH10cosθ

DH|ADAH||2OHAH||20sinθ10cosθ|,

OD.

∴當θ時,.

4條線路OA,OBOC,OD總長度的最小值為(米).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知四邊形ABCD是邊長為2的菱形,∠ABC=60°,平面AEFC⊥平面ABCDEFAC,AE=AB,AC=2EF.

1)求證:平面BED⊥平面AEFC

2)若四邊形AEFC為直角梯形,且EAAC,求二面角B-FC-D的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,直線的參數方程為為參數).以原點為極點,軸的正半軸為極軸建立極坐標系,且曲線的極坐標方程為.

(1)寫出直線的普通方程與曲線的直角坐標方程;

(2)設直線上的定點在曲線外且其到上的點的最短距離為,試求點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應點為,圓柱表面上的點在左視圖上的對應點為,則在此圓柱側面上,從的路徑中,最短路徑的長度為( )

A. B. C. D. 2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)若,求曲線處的切線方程;

(Ⅱ)若,求證:;

(Ⅲ)當時,若關于的不等式的解集為,且,,求的取值范圍(用表示).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數方程為(為參數).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.

(Ⅰ)求直線的直角坐標方程與曲線的普通方程;

(Ⅱ)已知點設直線與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論的單調性;

(2)定義:對于函數,若存在,使成立,則稱為函數的不動點.如果函數存在不動點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐的底面是菱形,,平面平面是等邊三角形.

1)求證:;

2)若的面積為,求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,直線的參數方程為(其中為參數),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為

1)若,求直線與曲線的交點的直角坐標;

2)若點在曲線上,且到直線距離的最大值為,求直線的斜率.

查看答案和解析>>

同步練習冊答案