【題目】如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍且經(jīng)過點(diǎn),平行于的直線在軸上的截距為,直線交橢圓于兩個(gè)不同點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍.
【答案】(1)(2)-2<m<2,且m≠0
【解析】
試題分析:(1)設(shè)出橢圓的方程,利用長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍且經(jīng)過點(diǎn)M(2,1),建立方程,求出a,b,即可求橢圓的方程;(2)由直線方程代入橢圓方程,利用根的判別式,即可求m的取值范圍
試題解析:(1)設(shè)橢圓方程為(a>b>0)
則解得
∴橢圓方程為
(2)∵直線l平行于OM,且在y軸上的截距為m
又KOM=,∴l的方程為:y=x+m
由∴x2+2mx+2m2-4=0
∵直線l與橢圓交于A、B兩個(gè)不同點(diǎn),
∴Δ=(2m)2-4(2m2-4)>0,
解得-2<m<2,且m≠0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),其中, ,如果函數(shù)與函數(shù)都有零點(diǎn)且它們的零點(diǎn)完全相同,則為________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于數(shù)集,其中, ,定義向量集.若對(duì)于任意,使得,則稱具有性質(zhì).例如具有性質(zhì).
()若,且具有性質(zhì),求的值.
()若具有性質(zhì),求證: ,且當(dāng)時(shí), .
()若具有性質(zhì),且, (為常數(shù)),求有窮數(shù)列, , , 的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某玩具所需成本費(fèi)用為P元,且P=1 000+5x+x2,而每套售出的價(jià)格為Q元,其中Q(x)=a+ (a,b∈R),
(1)問:玩具廠生產(chǎn)多少套時(shí),使得每套所需成本費(fèi)用最少?
(2)若生產(chǎn)出的玩具能全部售出,且當(dāng)產(chǎn)量為150套時(shí)利潤最大,此時(shí)每套價(jià)格為30元,求a,b的值.(利潤=銷售收入-成本).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為等腰梯形, , , , 分別為線段, 的中點(diǎn).
(1)證明: 平面;
(2)若平面, ,求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓E經(jīng)過M(﹣1,0),N(0,1),P(,)三點(diǎn).
(1)求圓E的方程;
(2)若過點(diǎn)C(2,2)作圓E的兩條切線,切點(diǎn)分別是A,B,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,兩焦點(diǎn)分別為,右頂點(diǎn)為, .
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過定點(diǎn)的直線與雙曲線的左支有兩個(gè)交點(diǎn),與橢圓交于兩點(diǎn),與圓交于兩點(diǎn),若的面積為, ,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說:“是或作品獲得一等獎(jiǎng)”;
乙說:“作品獲得一等獎(jiǎng)”;
丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說:“是作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com