【題目】下列命題中 ①若loga3>logb3,則a>b;
②函數(shù)f(x)=x2﹣2x+3,x∈[0,+∞)的值域?yàn)閇2,+∞);
③設(shè)g(x)是定義在區(qū)間[a,b]上的連續(xù)函數(shù).若g(a)=g(b)>0,則函數(shù)g(x)無(wú)零點(diǎn);
④函數(shù) 既是奇函數(shù)又是減函數(shù).
其中正確的命題有

【答案】②④
【解析】解:若loga3>logb3>0,則a<b,故①錯(cuò)誤;

函數(shù)f(x)=x2﹣2x+3的圖象開口朝上,且以直線x=1為對(duì)稱軸,

當(dāng)x=1時(shí),函數(shù)取最小值2,無(wú)最大值,故函數(shù)f(x)=x2﹣2x+3,x∈[0,+∞)的值域?yàn)閇2,+∞);

故②正確;

g(x)是定義在區(qū)間[a,b]上的連續(xù)函數(shù).若g(a)=g(b)>0,

則函數(shù)g(x)可能存在零點(diǎn);

故③錯(cuò)誤;

數(shù) 滿足h(﹣x)=﹣h(x),故h(x)為奇函數(shù),

又由 =﹣ex<0恒成立,故h(x)為減函數(shù)

故④正確;

所以答案是:②④.

【考點(diǎn)精析】本題主要考查了命題的真假判斷與應(yīng)用的相關(guān)知識(shí)點(diǎn),需要掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:x2+y2﹣4x﹣14y+45=0及點(diǎn)Q(﹣2,3).
(1)若M為圓C上任一點(diǎn),求|MQ|的最大值和最小值;
(2)若實(shí)數(shù)m,n滿足m2+n2﹣4m﹣14n+45=0,求k= 的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,∠APB=∠BPC=∠APC=90°,O在△ABC內(nèi),∠OPC=45°,∠OPA=60°,則∠OPB的余弦值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=x3﹣3a2x+1的圖像與直線y=3只有一個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a為實(shí)數(shù),函數(shù)f(x)=ex﹣2x+2a,x∈R.
(1)求函數(shù)f(x)的極值;
(2)求證:當(dāng)a>ln2﹣1且x>0時(shí),ex>2x﹣2a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)定點(diǎn)M(3, )與拋物線y2=2x上的點(diǎn)P的距離為d1 , P到拋物線準(zhǔn)線l的距離為d2 , 則d1+d2取最小值時(shí),P點(diǎn)的坐標(biāo)為(
A.(0,0)
B.(1,
C.(2,2)
D.( ,-

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=alnx+ +x(a>0).若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x﹣2y=0垂直, (Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的最小正周期和單調(diào)區(qū)間;
(2)設(shè)銳角△ABC的三個(gè)內(nèi)角A、B、C的對(duì)應(yīng)邊分別是a,b,c,若 ,f( )=﹣ ,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P為線段AD(含端點(diǎn))上一個(gè)動(dòng)點(diǎn),設(shè) ,則得到函數(shù)y=f(x).
(Ⅰ)求f(1)的值;
(Ⅱ)對(duì)于任意a∈(0,+∞),求函數(shù)f(x)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案