已知橢圓C:)的左焦點(diǎn)為,離心率為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),T為直線上任意一點(diǎn),過F作TF的垂線交橢圓C于點(diǎn)P,Q.當(dāng)四邊形OPTQ是平行四邊形時,求四邊形OPTQ的面積.

(1) ;(2)

解析試題分析:(1)由已知得:,,所以,再由可得,從而得橢圓的標(biāo)準(zhǔn)方程. )橢圓方程化為.設(shè)PQ的方程為,代入橢圓方程得:.面積,而,所以只要求出的值即可得面積.因為四邊形OPTQ是平行四邊形,所以,即.
再結(jié)合韋達(dá)定理即可得的值.
試題解析:(1)由已知得:,,所以
又由,解得,所以橢圓的標(biāo)準(zhǔn)方程為:.
(2)橢圓方程化為.
設(shè)T點(diǎn)的坐標(biāo)為,則直線TF的斜率.
當(dāng)時,直線PQ的斜率,直線PQ的方程是
當(dāng)時,直線PQ的方程是,也符合的形式.
代入橢圓方程得:.
其判別式.
設(shè),
.
因為四邊形OPTQ是平行四邊形,所以,即.
所以,解得.
此時四邊形OPTQ的面積
.
【考點(diǎn)定位】1、直線及橢圓的方程;2、直線與圓錐曲線的位置關(guān)系;3、三角形的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線C: 的焦點(diǎn)為F,ABQ的三個頂點(diǎn)都在拋物線C上,點(diǎn)M為AB的中點(diǎn),.(1)若M,求拋物線C方程;(2)若的常數(shù),試求線段長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)A,B分別為橢圓=1(a>b>0)的左、右頂點(diǎn),(1,)為橢圓上一點(diǎn),橢圓長半軸長等于焦距.
(1)求橢圓的方程;
(2)設(shè)P(4,x)(x≠0),若直線AP,BP分別與橢圓相交于異于A,B的點(diǎn)M,N,求證:∠MBN為鈍角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知線段,的中點(diǎn)為,動點(diǎn)滿足為正常數(shù)).
(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求動點(diǎn)所在的曲線方程;
(2)若,動點(diǎn)滿足,且,試求面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知曲線上的點(diǎn)到點(diǎn)的距離比它到直線的距離小2.
(1)求曲線的方程;
(2)曲線在點(diǎn)處的切線軸交于點(diǎn).直線分別與直線軸交于點(diǎn),以為直徑作圓,過點(diǎn)作圓的切線,切點(diǎn)為,試探究:當(dāng)點(diǎn)在曲線上運(yùn)動(點(diǎn)與原點(diǎn)不重合)時,線段的長度是否發(fā)生變化?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的三個頂點(diǎn)在拋物線上,為拋物線的焦點(diǎn),點(diǎn)的中點(diǎn),
(1)若,求點(diǎn)的坐標(biāo);
(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,為坐標(biāo)原點(diǎn),橢圓的左右焦點(diǎn)分別為,離心率為;雙曲線的左右焦點(diǎn)分別為,離心率為,已知,且.
(1)求的方程;
(2)過點(diǎn)作的不垂直于軸的弦,的中點(diǎn),當(dāng)直線交于兩點(diǎn)時,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓.
(1)求橢圓的離心率;
(2)設(shè)為原點(diǎn),若點(diǎn)在橢圓上,點(diǎn)在直線上,且,試判斷直線與圓的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)是橢圓上任一點(diǎn),點(diǎn)到直線的距離為,到點(diǎn)的距離為,且.直線與橢圓交于不同兩點(diǎn)(,都在軸上方),且
(1)求橢圓的方程;
(2)當(dāng)為橢圓與軸正半軸的交點(diǎn)時,求直線方程;
(3)對于動直線,是否存在一個定點(diǎn),無論如何變化,直線總經(jīng)過此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案