【題目】已知函數(shù),.
(1)若函數(shù)在處的切線與直線平行,求實(shí)數(shù)的值;
(2)試討論函數(shù)在區(qū)間上最大值;
(3)若時(shí),函數(shù)恰有兩個(gè)零點(diǎn),求證:.
【答案】(1);(2) 當(dāng)時(shí),,當(dāng)時(shí),;(3)見解析.
【解析】
試題分析:(1)求函數(shù)的導(dǎo)數(shù),由求之即可;(2) ,分當(dāng)與分別討論函數(shù)的單調(diào)性,求其最值即可;(3)由可得,即,設(shè),則,即,故,用作差比較法證明即可.
試題解析: (1)由,,
由于函數(shù)在處的切線與直線平行,
故,解得.
(2),由時(shí),;時(shí),,
所以①當(dāng)時(shí),在上單調(diào)遞減,
故在上的最大值為;
②當(dāng),在上單調(diào)遞增,在上單調(diào)遞減,
故在上的最大值為;
(3)若時(shí),恰有兩個(gè)零點(diǎn),
由,,
得,
∴,設(shè),,,
故,
∴,記函數(shù),因,
∴在遞增,∵,∴,
又,,故成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面,平面 平面,,為等腰直角三角形,.
(1)證明:平面平面;
(2)若三棱錐的體積為,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了考查某廠2000名工人的生產(chǎn)技能情況,隨機(jī)抽查了該廠名工人某天的產(chǎn)量(單位:件),整理后得到如下的頻率分布直方圖(產(chǎn)量的區(qū)間分別為:),其中產(chǎn)量在的工人有6名.
(1)求這一天產(chǎn)量不小于25的工人數(shù);
(2)該廠規(guī)定從產(chǎn)量低于20件的工人中選取2名工人進(jìn)行培訓(xùn),求這兩名工人不在同一分組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市有兩家共享單車公司,在市場(chǎng)上分別投放了黃、藍(lán)兩種顏色的單車,已知黃、藍(lán)兩種顏色的單車的投放比例為2:1.監(jiān)管部門為了了解兩種顏色的單車的質(zhì)量,決定從市場(chǎng)中隨機(jī)抽取5輛單車進(jìn)行體驗(yàn),若每輛單車被抽取的可能性相同.
(1)求抽取的5輛單車中有2輛是藍(lán)色顏色單車的概率;
(2)在騎行體驗(yàn)過程中,發(fā)現(xiàn)藍(lán)色單車存在一定質(zhì)量問題,監(jiān)管部門決定從市場(chǎng)中隨機(jī)地抽取一輛送技術(shù)部門作進(jìn)一步抽樣檢測(cè),并規(guī)定若抽到的是藍(lán)色單車,則抽樣結(jié)束,若抽取的是黃色單車,則將其放回市場(chǎng)中,并繼續(xù)從市場(chǎng)中隨機(jī)地抽取下一輛單車,并規(guī)定抽樣的次數(shù)最多不超過()次.在抽樣結(jié)束時(shí),已取到的黃色單車以表示,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓的離心率,且點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)若點(diǎn)都在橢圓上,且中點(diǎn)在線段(不包括端點(diǎn))上.
①求直線的斜率;
②求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知、是異面直線,給出下列結(jié)論:
①一定存在平面,使直線平面,直線平面;
②一定存在平面,使直線平面,直線平面;
③一定存在無(wú)數(shù)個(gè)平面,使直線與平面交于一個(gè)定點(diǎn),且直線平面.
則所有正確結(jié)論的序號(hào)為( )
A.①②B.②C.②③D.③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中
(1)當(dāng)時(shí),寫出函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)為偶函數(shù),求實(shí)數(shù)的值;
(3)若對(duì)任意的實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】保護(hù)環(huán)境,防治環(huán)境污染越來(lái)越得到人們的重視,某企業(yè)在現(xiàn)有設(shè)備下每日生產(chǎn)總成本(單位:萬(wàn)元)與日產(chǎn)量(單位:噸)之間的函數(shù)關(guān)系式為.現(xiàn)為了減少大氣污染,該企業(yè)引進(jìn)了除塵設(shè)備,每噸產(chǎn)品除塵費(fèi)用為萬(wàn)元,除塵后,當(dāng)日產(chǎn)量時(shí),每日生產(chǎn)總成本.
(1)求的值;
(2)若每噸產(chǎn)品出廠價(jià)為48萬(wàn)元,試求除塵后日產(chǎn)量為多少噸時(shí),每噸產(chǎn)品的利潤(rùn)最大,最大利潤(rùn)為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在倡導(dǎo)低碳、節(jié)能減排政策的推動(dòng)下,越來(lái)越多的消費(fèi)者選擇購(gòu)買新能源汽車.某品牌新能源汽車的行駛里程x(萬(wàn)公里)與該里程內(nèi)維修保養(yǎng)的總費(fèi)用y(千元)的統(tǒng)計(jì)數(shù)據(jù)如下:
1 | 2 | 3 | 4 | 5 | 6 | |
0.8 | 1.8 | 3.3 | 4.5 | 4.7 | 6.8 |
(1)根據(jù)表中數(shù)據(jù)建立y關(guān)于x的回歸方程為.我們認(rèn)為,若殘差絕對(duì)值,則該數(shù)據(jù)為可疑數(shù)據(jù),請(qǐng)找出上表中的可疑數(shù)據(jù);
(2)經(jīng)過確認(rèn),數(shù)據(jù)采集有誤,(1)中可疑數(shù)據(jù)的維修保養(yǎng)總費(fèi)用應(yīng)增加0.7千元.請(qǐng)重新利用線性回歸模型擬合數(shù)據(jù).(精確到0.01)
附:,.,,,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com