【題目】已知點(diǎn)E(﹣2,0),點(diǎn)P時(shí)圓F:(x﹣2)2+y2=36上任意一點(diǎn),線段EP的垂直平分線交FP于點(diǎn)M,點(diǎn)M的軌跡記為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過F的直線交曲線C于不同的A、B兩點(diǎn),交y軸于點(diǎn)N,已知 =m , =n ,求m+n的值.
【答案】解:(Ⅰ)由題意知,|ME|+|MF|=|MP|+|MF|=r=6>|EF|=4,
故由橢圓定義知,點(diǎn)M的軌跡是以點(diǎn)E,F(xiàn)為焦點(diǎn),長軸為6,焦距為4的橢圓,從而長半軸長為a=3,短半軸長為b= = ,
∴曲線C的方程為:
(Ⅱ)由題知F(2,0),
若直線AB恰好過原點(diǎn),則A(﹣3,0),B(3,0),N(0,0),
∴ =(﹣3,0), =(5,0),則m= ,
=(3,0), =(﹣1,0),則n=﹣3,
∴m+n= .
若直線AB不過原點(diǎn),設(shè)直線AB:x=ty+2,t≠0,
A(ty1+2,y1),B(ty2+2,y2),N(0,﹣ ).
則 =(ty1+2,y1+ ), =(﹣ty1,﹣y1),
=(ty2+2,y2+ ), =(﹣ty2,﹣y2),
由 ,得y1+ =m(﹣y1),從而m= ;
由 ,得y2+ =n(﹣y2),從而n= ;
故m+n= +( )= =﹣2﹣ .
聯(lián)立方程組得: ,整理得(5t2+9)y2+20ty﹣25=0,
∴y1+y2=﹣ ,y1y2= ,
∴m+n=﹣2﹣ ═ =﹣2﹣ = .
綜上所述,m+n=
【解析】(Ⅰ)求出|ME|+|MF|=6>|EF|=4,判斷點(diǎn)M的軌跡是以點(diǎn)E,F(xiàn)為焦點(diǎn),長軸為6,焦距為4的橢圓,
然后求解方程.(Ⅱ)求出F(2,0),若直線AB恰好過原點(diǎn),計(jì)算m+n的值即可;若直線AB不過原點(diǎn),設(shè)直線AB:x=ty+2,t≠0,求出相關(guān)點(diǎn)的坐標(biāo)與向量,表示出+n,聯(lián)立直線與橢圓方程的方程組,利用韋達(dá)定理,轉(zhuǎn)化求解即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|2x﹣1|+|2x﹣3|,x∈R.
(1)解不等式f(x)≤5;
(2)若f(x)+m≠0恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)為R上的可導(dǎo)函數(shù),且對x∈R,均有f(x)>f′(x),則有( )
A.e2016f(﹣2016)<f(0),f(2016)<e2016f(0)
B.e2016f(﹣2016)>f(0),f(2016)>e2016f(0)
C.e2016f(﹣2016)<f(0),f(2016)>e2016f(0)
D.e2016f(﹣2016)>f(0),f(2016)<e2016f(0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)過點(diǎn)( ,1),且焦距為2 .
(1)求橢圓C的方程;
(2)若直線l:y=k(x+1)(k>﹣2)與橢圓C相交于不同的兩點(diǎn)A、B,線段AB的中點(diǎn)M到直線2x+y+t=0的距離為 ,求t(t>2)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2lnx﹣ax2+3,若存在實(shí)數(shù)m、n∈[1,5]滿足n﹣m≥2時(shí),f(m)=f(n)成立,則實(shí)數(shù)a的最大值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)典籍《九章算術(shù)》“盈不足”中有一道兩鼠穿墻問題:“今有垣厚十尺,兩鼠對穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出結(jié)果n=( )
A.4
B.5
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為 3 的菱形,∠ABC=60°,PA⊥平面ABCD,PA=3,F(xiàn) 是棱 PA上的一個(gè)動(dòng)點(diǎn),E為PD的中點(diǎn).
(Ⅰ)若 AF=1,求證:CE∥平面 BDF;
(Ⅱ)若 AF=2,求平面 BDF 與平面 PCD所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知α∈[0,π),在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為 (t為參數(shù));在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線l2的極坐標(biāo)方程是ρcos(θ﹣α)=2sin(α+ ).
(Ⅰ)求證:l1⊥l2
(Ⅱ)設(shè)點(diǎn)A的極坐標(biāo)為(2, ),P為直線l1 , l2的交點(diǎn),求|OP||AP|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 (a>b>0)的右焦點(diǎn)為F2(3,0),離心率為e.
(Ⅰ)若 ,求橢圓的方程;
(Ⅱ)設(shè)直線y=kx與橢圓相交于A,B兩點(diǎn),M,N分別為線段AF2 , BF2的中點(diǎn).若坐標(biāo)原點(diǎn)O在以MN為直徑的圓上,且 ,求k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com