已知橢圓:的離心率,原點到過點,的直線的距離是.
(1)求橢圓的方程;
(2)若橢圓上一動點關于直線的對稱點為,求 的取值范圍;
(3)如果直線交橢圓于不同的兩點,,且,都在以為圓心的圓上,求的值.

(1)(2)(3)

解析試題分析:(1)由截距式可得直線的方程,根據(jù)點到線的距離公式可得間的關系,又因為,解方程組可得的值。(2)由點關于直線的對稱點問題可知直線和直線垂直,且的中點在直線上,由此可用表示出。再將點代入橢圓方程將表示代入上式,根據(jù)橢圓方程可的的范圍,從而可得出所求范圍。(3)將直線和橢圓方程聯(lián)立,消去得關于的一元二次方程,根據(jù)韋達定理可得根與系數(shù)的關系。根據(jù)題意可知,可根據(jù)斜率相乘等于列出方程,也可轉化為向量數(shù)量積為0列出方程。
試題解析:(Ⅰ)因為,,所以 .
因為原點到直線:的距離,解得,
故所求橢圓的方程為.        4分
(Ⅱ)因為點關于直線的對稱點為
所以    解得 ,.
所以.  
因為點在橢圓:上,所以
因為, 所以.所以的取值范圍為.  9分
(Ⅲ)由題意消去 ,整理得.可知.
,,的中點是
,
所以.  所以.
.  又因為,
所以.
所以                    14分
考點:1點到線的距離; 2橢圓方程;3點關于線的對稱點;4轉換思想。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1、F2,線段OF1、OF2的中點分別為B1、B2,且△AB1B2是面積為4的直角三角形.

(1)求該橢圓的離心率和標準方程;
(2)過B1作直線交橢圓于P、Q兩點,使PB2⊥QB2,求△PB2Q的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

A,B分別是直線yxy=-x上的動點,且|AB|=,設O為坐標原點,動點P滿足.
(1)求點P的軌跡方程;
(2)過點(,0)作兩條互相垂直的直線l1l2,直線l1,l2與點P的軌跡的相交弦分別為CDEF,設CD,EF的弦中點分別為MN,求證:直線MN恒過一個定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知線段AB的兩個端點A,B分別在x軸、y軸上滑動,|AB|=3,點M滿足2=.
(1)求動點M的軌跡E的方程.
(2)若曲線E的所有弦都不能被直線l:y=k(x-1)垂直平分,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:+=1(a>b>0)的右焦點為F(1,0),且點(-1,)在橢圓C上.
(1)求橢圓C的標準方程.
(2)已知點Q(,0),動直線l過點F,且直線l與橢圓C交于A,B兩點,證明:·為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

橢圓的離心率為,且過點直線與橢圓M交于A、C兩點,直線與橢圓M交于B、D兩點,四邊形ABCD是平行四邊形
(1)求橢圓M的方程;
(2)求證:平行四邊形ABCD的對角線AC和BD相交于原點O;
(3)若平行四邊形ABCD為菱形,求菱形ABCD的面積的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,已知拋物線方程為y2=4x,其焦點為F,準線為l,A點為拋物線上異于頂點的一個動點,射線HAE垂直于準線l,垂足為H,C點在x軸正半軸上,且四邊形AHFC是平行四邊形,線段AF和AC的延長線分別交拋物線于點B和點D.

(1)證明:∠BAD=∠EAD;
(2)求△ABD面積的最小值,并寫出此時A點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C的中心在原點,焦點y在軸上,焦距為,且過點M。
(1)求橢圓C的方程;
(2)若過點的直線l交橢圓C于A、B兩點,且N恰好為AB中點,能否在橢圓C上找到點D,使△ABD的面積最大?若能,求出點D的坐標;若不能,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示是拋物線形拱橋,當水面在l時,拱頂離水面2m,水面寬4m.水位下降1m后,水面寬    m.

查看答案和解析>>

同步練習冊答案