【題目】將函數的圖象向右平移個單位,在向上平移一個單位,得到g(x)的圖象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],則x1﹣2x2的最大值為( )
A. B. C. D.
科目:高中數學 來源: 題型:
【題目】已知a,b為常數,a0,函數.
(1)若a=2,b=1,求在(0,+∞)內的極值;
(2)①若a>0,b>0,求證:在區(qū)間[1,2]上是增函數;
②若,,且在區(qū)間[1,2]上是增函數,求由所有點形成的平面區(qū)域的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩家銷售公司擬各招聘一名產品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.
(1)請將兩家公司各一名推銷員的日工資 (單位: 元) 分別表示為日銷售件數的函數關系式;
(2)從兩家公司各隨機選取一名推銷員,對他們過去100天的銷售情況進行統計,得到如下條形圖.若將該頻率視為概率,分別求甲、乙兩家公司一名推銷員的日工資超過125元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費對年銷售量(單位:t)的影響.該公司對近5年的年宣傳費和年銷售量數據進行了研究,發(fā)現年宣傳費x(萬元)和年銷售量y(單位:t)具有線性相關關系,并對數據作了初步處理,得到下面的一些統計量的值.
(1)根據表中數據建立年銷售量y關于年宣傳費x的回歸方程;
(2)已知這種產品的年利潤z與x,y的關系為,根據(1)中的結果回答下列問題:
①當年宣傳費為10萬元時,年銷售量及年利潤的預報值是多少?
②估算該公司應該投入多少宣傳費,才能使得年利潤與年宣傳費的比值最大.
附:回歸方程中的斜率和截距的最小二乘估計公式分別為
參考數據:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(,且).
(Ⅰ)求函數的單調區(qū)間;
(Ⅱ)求函數在上的最大值.
【答案】(Ⅰ)的單調增區(qū)間為,單調減區(qū)間為.(Ⅱ)當時, ;當時, .
【解析】【試題分析】(I)利用的二階導數來研究求得函數的單調區(qū)間.(II) 由(Ⅰ)得在上單調遞減,在上單調遞增,由此可知.利用導數和對分類討論求得函數在不同取值時的最大值.
【試題解析】
(Ⅰ),
設 ,則.
∵, ,∴在上單調遞增,
從而得在上單調遞增,又∵,
∴當時, ,當時, ,
因此, 的單調增區(qū)間為,單調減區(qū)間為.
(Ⅱ)由(Ⅰ)得在上單調遞減,在上單調遞增,
由此可知.
∵, ,
∴.
設,
則 .
∵當時, ,∴在上單調遞增.
又∵,∴當時, ;當時, .
①當時, ,即,這時, ;
②當時, ,即,這時, .
綜上, 在上的最大值為:當時, ;
當時, .
[點睛]本小題主要考查函數的單調性,考查利用導數求最大值. 與函數零點有關的參數范圍問題,往往利用導數研究函數的單調區(qū)間和極值點,并結合特殊點,從而判斷函數的大致圖像,討論其圖象與軸的位置關系,進而確定參數的取值范圍;或通過對方程等價變形轉化為兩個函數圖象的交點問題.
【題型】解答題
【結束】
22
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .
(Ⅰ) 寫出圓 的參數方程和直線的直角坐標方程;
( Ⅱ ) 設直線 與軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知甲盒內有大小相同的個紅球和個黑球,乙盒內有大小相同的個紅球和個黑球.現從甲、乙兩個盒內各任取個球.
(1)求取出的個球中恰有個紅球的概率;
(2)設為取出的個球中紅球的個數,求的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數同一周期中最高點的坐標為,最低點的坐標為.
(1)求、、、的值;
(2)利用五點法作出函數在一個周期上的簡圖.(利用鉛筆直尺作圖,橫縱坐標單位長度符合比例)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com