已知函數(shù).
(1)若關(guān)于的方程只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;
(2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)探究函數(shù)在區(qū)間上的最大值(直接寫出結(jié)果,不需給出演算步驟).
(1)(2)(3)當(dāng)時(shí),在上的最大值為;
當(dāng)時(shí), 在上的最大值為;
當(dāng)時(shí), 在上的最大值為0.
【解析】
試題分析:(1)方程,即,變形得,
顯然,已是該方程的根,從而欲使原方程只有一解,
即要求方程有且僅有一個(gè)等于1的解或無(wú)解,
結(jié)合圖形得. ……4分
(2)不等式對(duì)恒成立,即(*)對(duì)恒成立,
①當(dāng)時(shí),(*)顯然成立,此時(shí);
②當(dāng)時(shí),(*)可變形為,令
因?yàn)楫?dāng)時(shí),,當(dāng)時(shí),,
所以,故此時(shí).
綜合①②,得所求實(shí)數(shù)的取值范圍是. ……8分
(3)因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013110823060068391061/SYS201311082307016723955881_DA.files/image027.png">= ……10分
①當(dāng)時(shí),結(jié)合圖形可知在上遞減,在上遞增,
且,經(jīng)比較,此時(shí)在上的最大值為.
②當(dāng)時(shí),結(jié)合圖形可知在,上遞減,
在,上遞增,且,,
經(jīng)比較,知此時(shí)在上的最大值為.
③當(dāng)時(shí),結(jié)合圖形可知在,上遞減,
在,上遞增,且,,
經(jīng)比較,知此時(shí) 在上的最大值為.
④當(dāng)時(shí),結(jié)合圖形可知在,上遞減,
在,上遞增,且, ,
經(jīng)比較,知此時(shí) 在上的最大值為.
當(dāng)時(shí),結(jié)合圖形可知在上遞減,在上遞增,
故此時(shí) 在上的最大值為.
綜上所述,當(dāng)時(shí),在上的最大值為;
當(dāng)時(shí), 在上的最大值為;
當(dāng)時(shí), 在上的最大值為0. ……15分
考點(diǎn):本小題主要考查由方程根的情況求參數(shù)的取值范圍、恒成立問(wèn)題的求解和含參數(shù)的二次函數(shù)的最值問(wèn)題,考查學(xué)生數(shù)形結(jié)合思想和分類討論思想的應(yīng)用.
點(diǎn)評(píng):恒成立問(wèn)題一般轉(zhuǎn)化為最值問(wèn)題解決;分類討論時(shí),要盡量做到不重不漏.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)已知函數(shù).
(1)若,試確定函數(shù)的單調(diào)區(qū)間;(2)若,且對(duì)于任意,恒成立,試確定實(shí)數(shù)的取值范圍;(3)設(shè)函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆寧夏高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)已知函數(shù),
(1)若,求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖南省岳陽(yáng)市高三第一次質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)若為的極值點(diǎn),求實(shí)數(shù)的值;
(2)若在上為增函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),方程有實(shí)根,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖北省華中師大一附中高三上學(xué)期期中檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)。
(1)若,求函數(shù)的值;
(2)求函數(shù)的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:吉林省10-11學(xué)年高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題
已知函數(shù).
(1)若從集合中任取一個(gè)元素,從集合中任取一個(gè)元素,求方程有兩個(gè)不相等實(shí)根的概率;
(2)若是從區(qū)間中任取的一個(gè)數(shù),是從區(qū)間中任取的一個(gè)數(shù),求方程沒(méi)有實(shí)根的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com