【題目】某工廠為提高生產效率,需引進一條新的生產線投入生產,現(xiàn)有兩條生產線可供選擇,生產線①:有AB兩道獨立運行的生產工序,且兩道工序出現(xiàn)故障的概率依次是0.02,0.03.若兩道工序都沒有出現(xiàn)故障,則生產成本為15萬元;若A工序出現(xiàn)故障,則生產成本增加2萬元;若B工序出現(xiàn)故障,則生產成本增加3萬元;若AB兩道工序都出現(xiàn)故障,則生產成本增加5萬元.生產線②:有a,b兩道獨立運行的生產工序,且兩道工序出現(xiàn)故障的概率依次是0.040.01.若兩道工序都沒有出現(xiàn)故障,則生產成本為14萬元;若a工序出現(xiàn)故障,則生產成本增加8萬元;若b工序出現(xiàn)故障,則生產成本增加5萬元;若a,b兩道工序都出現(xiàn)故障,則生產成本增加13萬元.

1)若選擇生產線①,求生產成本恰好為18萬元的概率;

2)為最大限度節(jié)約生產成本,你會給工廠建議選擇哪條生產線?請說明理由.

【答案】10.0294.2)應選生產線②.見解析

【解析】

1)由題意轉化條件得A工序不出現(xiàn)故障B工序出現(xiàn)故障,利用相互獨立事件的概率公式即可得解;

2)分別算出兩個生產線增加的生產成本的期望,進而求出兩個生產線的生產成本期望值,比較期望值即可得解.

1)若選擇生產線①,生產成本恰好為18萬元,即A工序不出現(xiàn)故障B工序出現(xiàn)故障,故所求的概率為.

2)若選擇生產線①,設增加的生產成本為(萬元),則的可能取值為0,2,3,5.

,

,

,

所以萬元;

故選生產線①的生產成本期望值為 (萬元).

若選生產線②,設增加的生產成本為(萬元),則的可能取值為0,85,13.

,

,

,

所以

故選生產線②的生產成本期望值為 (萬元),

故應選生產線②.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中,

曲線為參數(shù)),為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線.

1)求的極坐標方程;

2)若相交于點,相交于點,當為何值時,最大,并求最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面直角坐標系,直線過點,且傾斜角為,以為極點,軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為.

(1)求直線的參數(shù)方程和圓的標準方程;

(2)設直線與圓交于兩點,若,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在國家批復成立江北新區(qū)后,南京市政府規(guī)劃在新區(qū)內的一條形地塊上新建一個全民健身中心,規(guī)劃區(qū)域為四邊形ABCD,如圖,點B在線段OA上,點CD分別在射線OPAQ上,且AC關于BD對稱.已知

1)若,求BD的長;

2)問點C在何處時,規(guī)劃區(qū)域的面積最小?最小值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某醫(yī)院對治療支氣管肺炎的兩種方案,進行比較研究,將志愿者分為兩組,分別采用方案和方案進行治療,統(tǒng)計結果如下:

有效

無效

合計

使用方案

96

120

使用方案

72

合計

32

1)完成上述列聯(lián)表,并比較兩種治療方案有效的頻率;

2)能否在犯錯誤的概率不超過0.05的前提下認為治療是否有效與方案選擇有關?

附:,其中.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論的極值點的個數(shù);

2)設函數(shù),為曲線上任意兩個不同的點,設直線的斜率為,若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線上一點作直線交拋物線E于另一點N.

1)若直線MN的斜率為1,求線段的長.

2)不過點M的動直線l交拋物線EA,B兩點,且以AB為直徑的圓經過點M,問動直線l是否恒過定點.如果有求定點坐標,如果沒有請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線C的參數(shù)方程為為參數(shù)),以原點O為極點,x軸正半軸為極軸建立極坐標系,直線的極坐標方程為,且直線與曲線C有兩個不同的交點.

1)求實數(shù)a的取值范圍;

2)已知M為曲線C上一點,且曲線C在點M處的切線與直線垂直,求點M的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若單調遞增,求的值;

2)當時,設函數(shù)的最小值為,求函數(shù)的值域.

查看答案和解析>>

同步練習冊答案