【題目】已知點(diǎn)P為曲線C上任意一點(diǎn), 直線、的斜率之積為

求曲線的軌跡方程;;

Ⅱ)是否存在過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),使得?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

【答案】12

【解析】試題分析:(I)設(shè)點(diǎn),由,整理得可得.

(II)設(shè)點(diǎn),取MN的中點(diǎn)H,則,則可轉(zhuǎn)化為,聯(lián)立直線與橢圓,結(jié)合韋達(dá)定理建立關(guān)于斜率k的方程,求解即可.

試題解析:(I)設(shè)點(diǎn),則

整理得:

故曲線的軌跡方程為:

.

(II)假設(shè)存在直線滿足題意.

顯然當(dāng)直線斜率不存在時(shí),直線與橢圓不相交.

①當(dāng)直線的斜率時(shí),設(shè)直線為:

聯(lián)立,化簡(jiǎn)得:

,解得

設(shè)點(diǎn),,則

的中點(diǎn),則,則

,化簡(jiǎn)得,無實(shí)數(shù)解,故舍去.

②當(dāng)時(shí), 為橢圓的左右頂點(diǎn),顯然滿足,此時(shí)直線的方程為

綜上可知,存在直線滿足題意,此時(shí)直線的方程為.  

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=3sin()+3,xR.

1)用五點(diǎn)法畫出它在一個(gè)周期內(nèi)的閉區(qū)間上的圖象;(過程可以不寫,只需畫出圖即可)

2)求函數(shù)的單調(diào)區(qū)間;

3)寫出如何由函數(shù)y=sinx的圖象得到函數(shù)f(x)=3sin()+3的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè):實(shí)數(shù)滿足,其中;:實(shí)數(shù)滿足.

(1),且為真,為假,求實(shí)數(shù)的取值范圍;

(2)的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前n項(xiàng)和為,滿足,.

1)若,求數(shù)列的通項(xiàng)公式;

2)是否存在一個(gè)奇數(shù),使得數(shù)列中的項(xiàng)都在數(shù)列中?若存在,找出符合條件的一個(gè)奇數(shù);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線,則下面結(jié)論正確的是( )

A. 上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線

B. 上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線

C. 上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線

D. 上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著城市化進(jìn)程日益加快,勞動(dòng)力日益向城市流動(dòng),某市為抽查該市內(nèi)工廠的生產(chǎn)能力,隨機(jī)抽取某個(gè)人數(shù)為1000人的工廠,其中有750人為高級(jí)工,250人為初級(jí)工,擬采用分層抽樣的方法從本廠抽取100名工人,來抽查工人的生產(chǎn)能力,初級(jí)工和高級(jí)工的抽查結(jié)果分組情況如表1和表2.

1

生產(chǎn)能力分組

人數(shù)

4

8

5

3

2

生產(chǎn)能力分組

人數(shù)

6

36

18

1)計(jì)算,,完成頻率分直方圖:

1:初級(jí)工人生產(chǎn)能力的頻率分布直方圖 2:高級(jí)工人生產(chǎn)能力的頻率分布直方圖

2)初級(jí)工和高級(jí)工各抽取多少人?

3)分別估計(jì)兩類工人生產(chǎn)能力的平均數(shù),并估計(jì)該工廠工人生產(chǎn)能力的平均數(shù).(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,AB AC,點(diǎn)EF分別在棱BB1,CC1上(均異于端點(diǎn)),且∠ABEACF,AEBB1,AFCC1

求證:(1)平面AEF⊥平面BB1C1C;

2BC //平面AEF

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;

上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)期間,由于高速公路繼續(xù)實(shí)行小型車免費(fèi),因此高速公路上車輛較多,某調(diào)查公司在某城市從七座以下小型汽車中按進(jìn)入服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們?cè)谀扯胃咚俟返能囁伲╧m/h)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如圖的頻率分布直方圖.

(Ⅰ)此調(diào)查公司在采樣中,用到的是什么抽樣方法?

(Ⅱ)求這40輛小型車輛車速的眾數(shù)、中位數(shù)以及平均數(shù)的估計(jì)值;

(Ⅲ)若從車速在[60,70)的車輛中任抽取2輛,求至少有一輛車的車速在[65,70)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案