【題目】兩千多年前,古希臘畢達哥拉斯學派的數(shù)學家曾經(jīng)在沙灘上研究數(shù)學問題.他們在沙灘上畫點或用小石子表示數(shù),按照點或小石子能排列的形狀對數(shù)進行分類.如下圖中實心點的個數(shù)5,9,14,20,…為梯形數(shù).根據(jù)圖形的構(gòu)成,記此數(shù)列的第2013項為a2013 , 則a2013﹣5=(
A.2019×2013
B.2019×2012
C.1006×2013
D.2019×1006

【答案】D
【解析】解:觀察梯形數(shù)的前幾項,得 5=2+3=a1
9=2+3+4=a2
14=2+3+4+5=a3

an=2+3+…+(n+2)= = (n+1)(n+4)
由此可得a2013=2+3+4+5+…+2011= ×2014×2017
∴a2013﹣5= ×2014×2017﹣5=1007×2017﹣5=2019×1006
故選:D
觀察梯形數(shù)的前幾項,歸納得an=2+3+…+(n+2),結(jié)合等差數(shù)列前n項和公式得an= (n+1)(n+4),由此可得a2013﹣5=1007×2017﹣5=2019×1006,得到本題答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:方程x2+mx+1=0有兩個不等的負根,命題q:4x2+4(m﹣2)x+1=0無實根,P且q為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市的教育主管部門對所管轄的學校進行年終督導評估,為了解某學校師生對學校教學管理的滿意度,分別從教師和不同年級的同學中隨機抽取若干師生,進行評分(滿分100分),繪制如下頻率分布直方圖(分組區(qū)間為, , , ),并將分數(shù)從低到高分為四個等級:

滿意度評分

滿意度等級

不滿意

基本滿意

滿意

非常滿意

已知滿意度等級為基本滿意的有340人.

(1)求表中的值及不滿意的人數(shù);

(2)在等級為不滿意的師生中,老師占,現(xiàn)從該等級師生中按分層抽樣抽取12人了解不滿意的原因,并從中抽取3人擔任整改督導員,記為老師整改督導員的人數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖四邊形是矩形,,的中點交于點,平面.

求證:

,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線頂點在原點,焦點在軸上,拋物線上一點到焦點的距離為3,線段的兩端點, 在拋物線上.

1求拋物線的方程;

2軸上存在一點,使線段經(jīng)過點時,以為直徑的圓經(jīng)過原點,求的值;

3在拋物線上存在點,滿足,若是以角為直角的等腰直角三角形,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若的極值點,求的極大值;

(2)求實數(shù)的范圍,使得恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠為了對新研究的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):

單價x元

8

8.2

8.4

8.6

8.8

9

銷售y件

90

84

83

80

75

68


(1)求回歸直線方程 ,其中 =﹣20.
(2)預(yù)計在今后的銷售中,銷售與單價仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價定為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[x]表示不超過x的最大整數(shù),例如:[π]=3. S1=[ ]+[ ]+[ ]=3
S2=[ ]+[ ]+[ ]+[ ]+[ ]=10
S3=[ ]+[ ]+[ ]+[ ]+[ ]+[ ]+ ]=21,
…,
依此規(guī)律,那么S10=(
A.210
B.230
C.220
D.240

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】由于研究性學習的需要,中學生李華持續(xù)收集了手機“微信運動”團隊中特定20名成員每天行走的步數(shù),其中某一天的數(shù)據(jù)記錄如下:

5860 6520 7326 6798 7325

8430 8215 7453 7446 6754

7638 6834 6460 6830 9860

8753 9450 9860 7290 7850

對這20個數(shù)據(jù)按組距1000進行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:

步數(shù)分組統(tǒng)計表(設(shè)步數(shù)為x

組別

步數(shù)分組

頻數(shù)

A

5500≤x<6500

2

B

6500≤x<7500

10

C

7500≤x<8500

m

D

8500≤x<9500

2

E

9500≤x<10500

n

(Ⅰ)寫出m,n的值,若該“微信運動”團隊共有120人,請估計該團隊中一天行走步數(shù)不少于7500步的人數(shù);

(Ⅱ)記C組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v1 ,E組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v2, ,試分別比較v1v2, 的大;(只需寫出結(jié)論)

(Ⅲ)從上述A,E兩個組別的步數(shù)數(shù)據(jù)中任取2個數(shù)據(jù),求這2個數(shù)據(jù)步數(shù)差的絕對值大于3000步的概率.

查看答案和解析>>

同步練習冊答案