(3分)(2011•重慶)動(dòng)圓的圓心在拋物線y2=8x上,且動(dòng)圓恒與直線x+2=0相切,則動(dòng)圓必過(guò)點(diǎn)        
(2,0)

試題分析:先由拋物線的標(biāo)準(zhǔn)方程寫出其焦點(diǎn)坐標(biāo),準(zhǔn)線方程,再結(jié)合拋物線的定義得出焦點(diǎn)必在動(dòng)圓上,從而解決問(wèn)題.
解:拋物線y2=8x的焦點(diǎn)F(2,0),
準(zhǔn)線方程為x+2=0,
故圓心到直線x+2=0的距離即半徑等于圓心到焦點(diǎn)F的距離,
所以F在圓上.
故答案為:(2,0).
點(diǎn)評(píng):主要考查知識(shí)點(diǎn):拋物線,本小題主要考查圓與拋物線的綜合、拋物線的定義等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一個(gè)動(dòng)圓與定圓相外切,且與定直線相切,則此動(dòng)圓的圓心的軌跡方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)F為拋物線C:的焦點(diǎn),過(guò)F且傾斜角為30°的直線交C于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),則
△OAB的面積為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

[2014·蚌埠模擬]已知M(-2,0),N(2,0),|PM|-|PN|=4,則動(dòng)點(diǎn)P的軌跡是(  )
A.雙曲線B.雙曲線左邊一支
C.一條射線 D.雙曲線右邊一支

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(5分)(2011•陜西)設(shè)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為x=﹣2,則拋物線的方程是(         )
A.y2=﹣8xB.y2=8xC.y2=﹣4xD.y2=4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)拋物線C:上的點(diǎn)M分別向C的準(zhǔn)線和x軸作垂線,兩條垂線及C的準(zhǔn)線和x軸圍成邊長(zhǎng)為4的正方形,點(diǎn)M在第一象限.
(1)求拋物線C的方程及點(diǎn)M的坐標(biāo);
(2)過(guò)點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與拋物線C交于A,B兩點(diǎn),如果點(diǎn)M在直線AB的上方,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知A、B為拋物線C:y2 = 4x上的兩個(gè)動(dòng)點(diǎn),點(diǎn)A在第一象限,點(diǎn)B在第四象限l1、l2分別過(guò)點(diǎn)A、B且與拋物線C相切,P為l1、l2的交點(diǎn).
(1)若直線AB過(guò)拋物線C的焦點(diǎn)F,求證:動(dòng)點(diǎn)P在一條定直線上,并求此直線方程;
(2)設(shè)C、D為直線l1、l2與直線x = 4的交點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,-1),B點(diǎn)在直線y = -3上,M點(diǎn)滿足, ,M點(diǎn)的軌跡為曲線C。
(1)求C的方程;
(2)P為C上的動(dòng)點(diǎn),l為C在P點(diǎn)處得切線,求O點(diǎn)到l距離的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)P是拋物線y2=2x上的動(dòng)點(diǎn),點(diǎn)P到準(zhǔn)線的距離為d,且點(diǎn)P在y軸上的射影是M,點(diǎn)A(,4),則|PA|+|PM|的最小值是
A.
B.4
C.
D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案