C.(選修4-4:坐標(biāo)系與參數(shù)方程)
在極坐標(biāo)系中,A為曲線ρ2+2ρcosθ-3=0 上的動(dòng)點(diǎn),B為直線ρcosθ+ρsinθ-7=0 上的動(dòng)點(diǎn),求AB 的最小值.
【答案】分析:化極坐標(biāo)方程為直角坐標(biāo)方程,然后利用點(diǎn)到直線的距離公式求出圓心到直線的距離,則圓上的動(dòng)點(diǎn)A到直線上的動(dòng)點(diǎn)B的最小距離為圓心到直線的距離減去圓的半徑.
解答:解:由ρ2+2ρcosθ-3=0,得:x2+y2+2x-3=0,即(x+1)2+y2=4.
所以曲線是以(-1,0)為圓心,以2為半徑的圓.
再由ρcosθ+ρsinθ-7=0得:x+y-7=0.
所以圓心到直線的距離為d=
則圓上的動(dòng)點(diǎn)A到直線上的動(dòng)點(diǎn)B的最小距離為
點(diǎn)評:本題考查了簡單曲線的極坐標(biāo)方程,考查了極坐標(biāo)與直角坐標(biāo)的互化,訓(xùn)練了點(diǎn)到直線的距離公式,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【選修4-4:坐標(biāo)系與參數(shù)方程】
在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為
x=3-
2
2
t
y=
5
-
2
2
t
(t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=2
5
sinθ.
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線l交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為(3,
5
),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•河南模擬)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xoy中,圓C的參數(shù)方程為
x=-
2
2
+rcosθ
y=-
2
2
+rsinθ
(θ為參數(shù)r>0)
以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸,并取相同的長度單位建立極坐標(biāo)系,直線l的極坐標(biāo)方程ρsin(θ+
π
4
)=
2
2

(I)求圓心的極坐標(biāo).
(II)若圓C上點(diǎn)到直線l的最大距離為3,求r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.請?jiān)诖鹁砑堉付▍^(qū)域內(nèi)作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
(B)(選修4-2:矩陣與變換)
二階矩陣M有特征值λ=8,其對應(yīng)的一個(gè)特征向量e=
1
1
,并且矩陣M對應(yīng)的變換將點(diǎn)(-1,2)變換成點(diǎn)(-2,4),求矩陣M2
(C)(選修4-4:坐標(biāo)系與參數(shù)方程)
已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn),極軸與x軸的正半軸重合,曲線C的極坐標(biāo)方程為ρ2cos2θ+3ρ2sin2θ=3,直線l的參數(shù)方程為
x=-
3
t
y=1+t
(t為參數(shù),t∈R).試在曲線C上一點(diǎn)M,使它到直線l的距離最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•荊州模擬)請?jiān)谙旅鎯深}中選做一題,如果多做,則按所做的第一題計(jì)分.
選修4-1:幾何證明選講
如圖,割線PBC經(jīng)過圓心O,PB=OB=1,圓周上有一點(diǎn)D,滿足∠COD=60°,連PD交圓于點(diǎn)E,則PE=
3
7
7
3
7
7

選修4-4:坐標(biāo)系與參數(shù)方程
已知直線l經(jīng)過點(diǎn)P(1,-1),傾斜角的余弦值為-
4
5
,圓C的極坐標(biāo)方程為ρ=
2
cos(θ+
π
4
)
,設(shè)直線l與圓C交于A,B兩點(diǎn),則弦長|AB|=
7
5
7
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,已知直線l的極坐標(biāo)方程為ρsin(θ+
π
4
)=1+
2
,圓C的圓心是C(
2
,
π
4
)
,半徑為
2

(1)求圓C的極坐標(biāo)方程;
(2)求直線l被圓C所截得的弦長.

查看答案和解析>>

同步練習(xí)冊答案