|
|
由函數(shù)的圖象與直線及y=1,所圍成的一個(gè)封閉圖形的面積是________.
|
|
|
答案:
解析:
|
+1
|
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
如果執(zhí)行如圖所示的程序框圖,輸入n=6,m=4,那么輸出p等于
|
[ ] |
A. |
720
|
B. |
120
|
C. |
240
|
D. |
360
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=2an-2,則a4=
|
[ ] |
A. |
64
|
B. |
32
|
C. |
16
|
D. |
8
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知集合A={x∈R|f|x|≠0},集合B={x∈R|g(x)≠0},全集U=R,則集合{x|f2(x)+g2(x)=0}=
|
[ ] |
A. |
(UA)∩(UB)
|
B. |
(UA)∪(UB)
|
C. |
U(A∪B)
|
D. |
A∩UB
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
在△ABC中,,則AB邊的長(zhǎng)度為
|
[ ] |
A. |
1
|
B. |
3
|
C. |
5
|
D. |
9
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC,PC的中點(diǎn).
(Ⅰ)證明:AE⊥PD;
(Ⅱ)若H為PD上的動(dòng)點(diǎn),EH與平面PAD所成最大角的正切值為,求二面角E-AF-C的余弦值.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為
|
[ ] |
A. |
12
|
B. |
11
|
C. |
|
D. |
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知數(shù)列{2n-1·an}的前n項(xiàng)和Sn=9-6n.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列{}的前n項(xiàng)和.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知數(shù)列{an}是各項(xiàng)均不為0的等差數(shù)列,公差為d,Sn為其前n項(xiàng)和,且滿足,n∈N*.?dāng)?shù)列{bn}滿足,Tn為數(shù)列{bn}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式和Tn;
(2)是否存在正整數(shù)m,n(1<m<n),使得T1,Tm,Tn成等比數(shù)列?若存在,求出所有m,n的值;若不存在,請(qǐng)說(shuō)明理由.
|
|
|
查看答案和解析>>