某車站每天上午發(fā)出兩班客車(每班客車只有一輛車)。第一班客車在8∶00,8∶20,8∶40這三個時刻隨機發(fā)出,且在8∶00發(fā)出的概率為,8∶20發(fā)出的概率為,8∶40發(fā)出的概率為;第二班客車在9∶00,9∶20,9∶40這三個時刻隨機發(fā)出,且在9∶00發(fā)出的概率為,9∶20發(fā)出的概率為,9∶40發(fā)出的概率為.兩班客車發(fā)出時刻是相互獨立的,一位旅客預(yù)計8∶10到站.求:
(1)請預(yù)測旅客乘到第一班客車的概率;
(2)求旅客候車時間的分布列和數(shù)學(xué)期望。
(1) (2) 
(1)旅客8∶10到站,能乘到8∶20或8∶40發(fā)出的車,由互斥事件的概率加法公式可求出概率;(2)旅客候車時間分別是10, 30, 50,70, 90分鐘,求出其對應(yīng)的概率,根據(jù)期望公式求得數(shù)學(xué)期望
(1)第一班若在8∶20或8∶40發(fā)出,則旅客能乘到,其概率為 …5分
(2)旅客候車時間的分布列為:
候車時間(分)
10
30
50
70
90
概率





候車時間的數(shù)學(xué)期望為 
答:這旅客候車時間的數(shù)學(xué)期望是30分鐘
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某學(xué)生在上學(xué)路上要經(jīng)過4個路口,假設(shè)在各路口是否遇到紅燈是相互獨立的,遇到紅燈的概率都是,遇到紅燈時停留的時間都是2min.
(Ⅰ)求這名學(xué)生在上學(xué)路上到第三個路口時首次遇到紅燈的概率;    
(Ⅱ)求這名學(xué)生在上學(xué)路上因遇到紅燈停留的總時間的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
甲乙兩名射手互不影響地進行射擊訓(xùn)練,根據(jù)以往的數(shù)據(jù)統(tǒng)計,他們設(shè)計成績的分布列如下:
射手甲
射手乙
環(huán)數(shù)
8
9
10
環(huán)數(shù)
8
9
10
概率



概率



(Ⅰ)若甲乙兩射手各射擊兩次,求四次射擊中恰有三次命中10環(huán)的概率;
(Ⅱ)若兩個射手各射擊1次,記所得的環(huán)數(shù)之和為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某種項目的射擊比賽,開始時在距目標100m處射擊,如果命中記3分,且停止射擊;若第一次射擊未命中,可以進行第二次射擊,但目標已在150m處,這時命中記2分,且停止射擊;若第二次仍未命中,還可以進行第三次射擊,此時目標已在200m處,若第三次命中則記1分,并停止射擊;若三次都未命中,則記0分,且比賽結(jié)束.已知射手甲在100m處擊中目標的概率為,他的命中率與目標的距離的平方成反比,且各次射擊都是獨立的.
(1)求射手甲在這次射擊比賽中命中目標的概率;
(2)求射手甲在這次射擊比賽中得分的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

甲、乙二人進行一次圍棋比賽,約定先勝局者獲得這次比賽的勝利,比賽結(jié)束.假設(shè)在一局比賽中,甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨立.現(xiàn)知前局中,甲、乙各勝局,設(shè)表示從第局開始到比賽結(jié)束所進行的局數(shù),則的數(shù)學(xué)期望為             

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某校的學(xué)生記者團由理科組和文科組構(gòu)成,具體數(shù)據(jù)如下表所示:
組別
理科
文科
性別
男生
女生
男生
女生
人數(shù)
4
4
3
1
學(xué)校準備從中選出4人到社區(qū)舉行的大型公益活動進行采訪,每選出一名男生,給其所在小組記1分,每選出一名女生則給其所在小組記2分,若要求被選出的4人中理科組、文科組的學(xué)生都有.(Ⅰ)求理科組恰好記4分的概率?(4分)
(Ⅱ)設(shè)文科男生被選出的人數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.(8分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知隨機變量X的分布列為P(X =k)=,k=1,2,3,則D(3X +5)等于 (     )
A.6B.9C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某班有名同學(xué),一次考試后的數(shù)學(xué)成績服從正態(tài)分布,則理論上分到 分的人數(shù)是 (     ) 
A.32B.16C.8D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某校要用三輛汽車從新校區(qū)把教職工接到老校區(qū),已知從新校區(qū)到老校區(qū)有兩條公路,汽車走①號公路堵車的概率為,不堵車的概率為;汽車走②號公路堵車的概率為,不堵車的概率為.由于客觀原因甲、乙兩輛汽車走①號公路,丙汽車走②號公路,且三輛車是否堵車相互之間沒有影響.
(Ⅰ)若三輛汽車中恰有一輛汽車被堵的概率為,求汽車走公路②堵車的概率;
(Ⅱ)在(Ⅰ)的條件下,求三輛汽車中被堵車輛的個數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案