【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且b,c是關(guān)于x的一元二次方程x2+mx﹣a2+b2+c2=0的兩根.
(1)求角A的大小;
(2)已知a= ,設(shè)B=θ,△ABC的面積為y,求y=f(θ)的最大值.

【答案】
(1)解:在△ABC中,由題意可得:bc=﹣a2+b2+c2,可得:b2+c2=a2+bc,

∴cosA= = ,

又∵A∈(0,π),

∴A=


(2)解:由a= ,A= 及正弦定理可得: ,

∴b=2sinB=2sinθ,c=2sinC=2sin( ﹣B)=2sin( ﹣θ),

∴y= bcsinA= sinθsin( ﹣θ)= sinθ( cosθ+ sinθ)= sin2θ﹣ cos2θ+ = sin(2θ﹣ )+ ,

由于0<θ< ,可得:﹣ <2θ﹣ ,

∴當(dāng)2θ﹣ = ,即θ= 時,ymax=


【解析】(1)由已知化簡可得:b2+c2=a2+bc,利用余弦定理可求cosA= ,結(jié)合范圍A∈(0,π),可求A的值.(2)由已知及正弦定理可得b=2sinθ,c=2sin( ﹣θ),利用,三角形面積公式,三角函數(shù)恒等變換的應(yīng)用化簡可求y= sin(2θ﹣ )+ ,由0<θ< ,可得范圍﹣ <2θ﹣ ,利用正弦函數(shù)的圖象可求最大值.
【考點精析】關(guān)于本題考查的正弦定理的定義和余弦定理的定義,需要了解正弦定理:;余弦定理:;;才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,函數(shù)f(x)的圖象記為曲線C.
(1)若函數(shù)f(x)在[0,+∞)上單調(diào)遞增,求c的取值范圍;
(2)若函數(shù)y=f(x)﹣m有兩個零點α,β(α≠β),且x=α為f(x)的極值點,求2α+β的值;
(3)設(shè)曲線C在動點A(x0 , f(x0))處的切線l1與C交于另一點B,在點B處的切線為l2 , 兩切線的斜率分別為k1 , k2 , 是否存在實數(shù)c,使得 為定值?若存在,求出c的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣DEF中,側(cè)面ABED是邊長為2的菱形,且∠ABE= ,BC= ,四棱錐F﹣ABED的體積為2,點F在平面ABED內(nèi)的正投影為G,且G在AE上,點M是在線段CF上,且CM= CF.
(Ⅰ)證明:直線GM∥平面DEF;
(Ⅱ)求二面角M﹣AB﹣F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要測量電視塔AB的高度,在C點測得塔頂?shù)难鼋鞘?5°,在D點測得塔頂?shù)难鼋鞘?0°,并測得水平面上的∠BCD=120°,CD=40m,則電視塔的高度是(
A.30m
B.40m
C. m
D. m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.
(Ⅰ)在平面PAB內(nèi)找一點M,使得直線CM∥平面PBE,并說明理由;
(Ⅱ)若二面角P﹣CD﹣A的大小為45°,求直線PA與平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù),﹣π<α<0),曲線C2的參數(shù)方程為 (t為參數(shù)),以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C1的極坐標(biāo)方程和曲線C2的普通方程;
(2)射線θ=﹣ 與曲線C1的交點為P,與曲線C2的交點為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)集A={a1 , a2 , …,an}(1=a1<a2<…<an , n≥2)具有性質(zhì)P:對任意的k(2≤k≤n),i,j(1≤i≤j≤n),使得ak=ai+aj成立.
(Ⅰ)分別判斷數(shù)集{1,3,4}與{1,2,3,6}是否具有性質(zhì)P,并說明理由;
(Ⅱ)求證:an≤2a1+a2+…+an1(n≥2);
(Ⅲ)若an=72,求數(shù)集A中所有元素的和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4-5:不等式選講】
已知f(x)=|x﹣1|+|x+2|.
(I)若不等式f(x)>a2對任意實數(shù)x恒成立,求實數(shù)a的取值的集合T;
(Ⅱ)設(shè)m、n∈T,證明: |m+n|<|mn+3|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足f(x+2)= f(x),當(dāng)x∈[0,2]時,f(x)= ,函數(shù)g(x)=x3+3x2+m.若對任意s∈[﹣4,﹣2),存在t∈[﹣4,﹣2),不等式f(s)﹣g(t)≥0成立,則實數(shù)m的取值范圍是(
A.(﹣∞,﹣12]
B.(﹣∞,14]
C.(﹣∞,﹣8]
D.(﹣∞, ]

查看答案和解析>>

同步練習(xí)冊答案