設(shè)關(guān)于x,y的不等式組表示的平面區(qū)域內(nèi)存在點(diǎn)P(x0,y0),滿足x0-2y0=2.求得m的取值范圍是( )
A. B.
C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題3第1課時練習(xí)卷(解析版) 題型:選擇題
按如圖所示的程序框圖運(yùn)行后,輸出的結(jié)果是63,則判斷框中的整數(shù)M的值是( )
A.5 B.6
C.7 D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題2第1課時練習(xí)卷(解析版) 題型:選擇題
給定命題p:函數(shù)y=sin和函數(shù)y=cos的圖象關(guān)于原點(diǎn)對稱;命題q:當(dāng)x=kπ+ (k∈Z)時,函數(shù)y=(sin 2x+cos 2x)取得極小值.下列說法正確的是( )
A.p∨q是假命題 B.?p∧q是假命題
C.p∧q是真命題 D.?p∨q是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第5課時練習(xí)卷(解析版) 題型:選擇題
設(shè)函數(shù)f(x)的定義域?yàn)?/span>R,x0(x0≠0)是f(x)的極大值點(diǎn),以下結(jié)論一定正確的是( )
A.?x∈R,f(x)≤f(x0)
B.-x0是f(-x)的極小值點(diǎn)
C.-x0是-f(x)的極小值點(diǎn)
D.-x0是-f(-x)的極小值點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第4課時練習(xí)卷(解析版) 題型:解答題
設(shè)集合A={x|x2<4},B=.
(1)求集合A∩B;
(2)若不等式2x2+ax+b<0的解集為B,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第3課時練習(xí)卷(解析版) 題型:解答題
設(shè)f(x)=|lg x|,a,b為實(shí)數(shù),且0<a<b.
(1)求方程f(x)=1的解;
(2)若a,b滿足f(a)=f(b)=2f,
求證:a·b=1,>1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第3課時練習(xí)卷(解析版) 題型:選擇題
如果一個點(diǎn)是一個指數(shù)函數(shù)和一個對數(shù)函數(shù)的圖象的交點(diǎn),那么稱這個點(diǎn)為“好點(diǎn)”.下列四個點(diǎn)P1(1,1),P2(1,2),P3,P4(2,2)中,“好點(diǎn)”的個數(shù)為( )
A.1 B.2
C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第1課時練習(xí)卷(解析版) 題型:填空題
已知在實(shí)數(shù)a,b滿足某一前提條件時,命題“若a>b,則<”及其逆命題、否命題和逆否命題都是假命題,則實(shí)數(shù)a,b應(yīng)滿足的前提條件是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題六練習(xí)卷(解析版) 題型:選擇題
已知圓C經(jīng)過A(5,2),B(-1,4)兩點(diǎn),圓心在x軸上,則圓C的方程是( )
A.(x-2)2+y2=13 B.(x+2)2+y2=17
C.(x+1)2+y2=40 D.(x-1)2+y2=20
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com