精英家教網 > 高中數學 > 題目詳情

【題目】已知圓,過直線上第一象限內的一動點作圓的兩條切線,切點分別為,兩點的直線與坐標軸分別交于兩點,則面積的最小值為(

A.B.C.D.

【答案】B

【解析】

由切線的性質,結合四點共圓判斷可得O,AM,B四點共圓,求得圓方程,由兩圓方程相減可得相交弦AB方程,由題意可得面積,結合基本不等式求得最值.

因為AB為切點,所以OAAM,OBBM,

所以O,A,M,B四點共圓,設M,),

則其圓心O',),方程為(x2+y2

整理得x2+y2xx0yy00,與圓Ox2+y21的方程作差得x+ y1,

AB是圓O與圓O'的公共弦,

即直線AB的方程為x+ y1,

又過兩點的直線與坐標軸分別交于兩點,

P0Q0,),又+2,∴,當且僅當=1等號成立,

面積為,∴面積的最小值為

故選:B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知動點到點的距離與它到直線的距離的比值為,設動點形成的軌跡為曲線..

1)求曲線的方程;

2)過點的直線與曲線交于兩點,點作,垂足為,過點作,垂足為,的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線為參數),將曲線上所有點橫坐標縮短為原來的,縱坐標不變,得到曲線,過點且傾斜角為的直線與曲線交于、兩點.

1)求曲線的參數方程和的取值范圍;

2)求中點的軌跡的參數方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是定義在的偶函數,且.時,,若方程300個不同的實數根,則實數m的取值范圍為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】共享單車因綠色、環(huán)保、健康的出行方式,在國內得到迅速推廣.最近,某機構在某地區(qū)隨機采訪了10名男士和10名女士,結果男士、女士中分別有7人、6人表示“經常騎共享單車出行”,其他人表示“較少或不選擇騎共享單車出行”.

1從這些男士和女士中各抽取一人,求至少有一人“經常騎共享單車出行”的概率;

2從這些男士中抽取一人,女士中抽取兩人,記這三人中“經常騎共享單車出行”的人數為,求的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】古希臘時期,人們認為最美人體的頭頂至肚臍的長度與肚臍至足底的長度之比是≈0.618,稱為黃金分割比例),著名的“斷臂維納斯”便是如此.此外,最美人體的頭頂至咽喉的長度與咽喉至肚臍的長度之比也是.若某人滿足上述兩個黃金分割比例,且腿長為105cm,頭頂至脖子下端的長度為26 cm,則其身高可能是

A. 165 cmB. 175 cmC. 185 cmD. 190cm

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分12)

已知函數(其中a是實數).

(1)求的單調區(qū)間;

(2)若設,且有兩個極值點 ,求取值范圍.(其中e為自然對數的底數).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為配合“2019雙十二促銷活動,某公司的四個商品派送點如圖環(huán)形分布,并且公司給四個派送點準備某種商品各50.根據平臺數據中心統(tǒng)計發(fā)現,需要將發(fā)送給四個派送點的商品數調整為40,4554,61,但調整只能在相鄰派送點進行,每次調動可以調整1件商品.為完成調整,則(

A.最少需要16次調動,有2種可行方案

B.最少需要15次調動,有1種可行方案

C.最少需要16次調動,有1種可行方案

D.最少需要15次調動,有2種可行方案

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在2018、2019每高考數學全國Ⅰ卷中,第22題考查坐標系和參數方程,第23題考查不等式選講.2018年髙考結束后,某校經統(tǒng)計發(fā)現:選擇第22題的考生較多并且得分率也較高.為研究2019年選做題得分情況,該校高三質量檢測的命題完全采用2019年高考選做題模式,在測試結束后,該校數學教師對全校高三學生的選做題得分進行抽樣統(tǒng)計,得到兩題得分的統(tǒng)計表如下(已知每名學生只選做—道題):

第22題的得分統(tǒng)計表

得分

0

3

5

8

10

理科人數

50

50

75

125

200

文科人數

25

25

125

0

25

第23題的得分統(tǒng)計表

得分

0

3

5

8

10

理科人數

30

52

58

60

200

文科人數

5

10

10

5

70

(1)完成如下2×2列聯(lián)表,并判斷能否有99%的把握認為“選做題的選擇”與“文、理科的科類”有關;

選做22題

選做23題

總計

理科人數

文科人數

總計

(2)若以全體高三學生選題的平均得分作為決策依據,如果你是考生,根據上面統(tǒng)計數據,你會選做哪道題,并說明理由.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步練習冊答案