已知橢圓、拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:

3

2

4

0

4

⑴求的標(biāo)準(zhǔn)方程;

⑵是否存在直線滿足條件:①過的焦點(diǎn);②與交不同兩點(diǎn)且滿足?若存在,求出直線的方程;若不存在,說明理由.

【命題意圖】本小題主要考查直線、橢圓及拋物線的標(biāo)準(zhǔn)方程,考查直線和橢圓的綜合應(yīng)用,考查學(xué)生的邏輯思維能力和運(yùn)算求解能力.

【試題解析】解:⑴設(shè)拋物線,則有,

據(jù)此驗(yàn)證個(gè)點(diǎn)知(3,),(4,4)在拋物線上,易求.(2分)

       設(shè),把點(diǎn)(2,0),(,)代入得:

,解得.∴方程為.                 (5分)

⑵容易驗(yàn)證直線的斜率不存在時(shí),不滿足題意.            (6分)

當(dāng)直線斜率存在時(shí),假設(shè)存在直線過拋物線焦點(diǎn),設(shè)其方程為,與的交點(diǎn)坐標(biāo)為.

消去并整理得 ,

于是 .①                            (8分)

.

.②              (9分)

,即,得(*).

將①、②代入(*)式,得,解得

所以存在直線滿足條件,且的方程為: (12分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省八校高三第二次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓,拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表中:

(1)求,的標(biāo)準(zhǔn)方程;

(2)設(shè)斜率不為0的動(dòng)直線有且只有一個(gè)公共點(diǎn),且與的準(zhǔn)線交于,試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn),使得以為直徑的圓恒過點(diǎn)?若存在,求出點(diǎn)的坐標(biāo),若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆河南安陽一中高二第一次階段測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓,拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為坐標(biāo)原點(diǎn),從每條曲線上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表中:

 

 

 

 

 

 

(1)求的標(biāo)準(zhǔn)方程;

(2)請問是否存在直線同時(shí)滿足條件:(ⅰ)過的焦點(diǎn);(ⅱ)與交于不同兩點(diǎn),且滿足.若存在,求出直線的方程;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省南陽市高三春期第十一次考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

  已知橢圓、拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:

3

4

0

(1)求,的標(biāo)準(zhǔn)方程;

(2)請問是否存在直線滿足條件:①過的焦點(diǎn);②與交于不同兩點(diǎn),,且滿足?若存在,求出直線的方程;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年吉林省長春市高三第一次調(diào)研測試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

已知橢圓、拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:

 

3

2

4

0

4

[

 

⑴求的標(biāo)準(zhǔn)方程;

⑵是否存在直線滿足條件:①過的焦點(diǎn);②與交不同兩點(diǎn)且滿足?若存在,求出直線的方程;若不存在,說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案