已知橢圓,拋物線的焦點均在軸上,的中心和的頂點均為坐標(biāo)原點,從每條曲線上各取兩個點,將其坐標(biāo)記錄于表中:

 

 

 

 

 

 

(1)求的標(biāo)準(zhǔn)方程;

(2)請問是否存在直線同時滿足條件:(ⅰ)過的焦點;(ⅱ)與交于不同兩點,且滿足.若存在,求出直線的方程;若不存在,請說明理由.

 

【答案】

(Ⅰ)方程為         

(Ⅱ)存在直線滿足條件,且的方程為:

【解析】(1) 設(shè)拋物線,則有,據(jù)此驗證個點知.在拋物線上,易求,再設(shè),把點(2,0)(,)代入得可建立關(guān)于a,b的兩個方程,求出a,b值,從而得到橢圓方程.

(II)由題意可知此直線斜率一定存在,從而可設(shè)直線l的方程為,再與橢圓C1的方程聯(lián)立消y后得關(guān)于x的一元二次方程,,即,得,然后根據(jù)韋達定理可得到關(guān)于k的方程,求出k值,從而得到直線l的方程.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓、拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上各取兩個點,將其坐標(biāo)記錄于下表中:

3

2

4

0

4

⑴求的標(biāo)準(zhǔn)方程;

⑵是否存在直線滿足條件:①過的焦點;②與交不同兩點且滿足?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省八校高三第二次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓,拋物線的焦點均在軸上,的中心和的頂點均為原點,每條曲線上取兩個點,將其坐標(biāo)記錄于表中:

(1)求的標(biāo)準(zhǔn)方程;

(2)設(shè)斜率不為0的動直線有且只有一個公共點,且與的準(zhǔn)線交于,試探究:在坐標(biāo)平面內(nèi)是否存在定點,使得以為直徑的圓恒過點?若存在,求出點的坐標(biāo),若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省南陽市高三春期第十一次考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

  已知橢圓、拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上取兩個點,將其坐標(biāo)記錄于下表中:

3

4

0

(1)求,的標(biāo)準(zhǔn)方程;

(2)請問是否存在直線滿足條件:①過的焦點;②與交于不同兩點,且滿足?若存在,求出直線的方程;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年吉林省長春市高三第一次調(diào)研測試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

已知橢圓、拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上各取兩個點,將其坐標(biāo)記錄于下表中:

 

3

2

4

0

4

[

 

⑴求的標(biāo)準(zhǔn)方程;

⑵是否存在直線滿足條件:①過的焦點;②與交不同兩點且滿足?若存在,求出直線的方程;若不存在,說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案