【題目】已知函數(shù)y=a﹣bcos(2x+ )(b>0)的最大值為3,最小值為﹣1.
(1)求a,b的值;
(2)當(dāng)求x∈[ , π]時(shí),函數(shù)g(x)=4asin(bx﹣ )的值域.

【答案】
(1)解:∵函數(shù)y=a﹣bcos(2x+ )(b>0)的最大值為3,最小值為﹣1,

,解得


(2)解:由(1)可得函數(shù)g(x)=4asin(bx﹣ )=4sin(2x﹣ ),

∵x∈[ , π],∴2x﹣ ∈[ , ],

∴sin(2x﹣ )∈[﹣ ,1],

故函數(shù)g(x)的值域?yàn)椋?


【解析】(1)由題意可得 ,由此求得a、b的值.(2)由(1)可得函數(shù)g(x)=4sin(2x﹣ ),根據(jù) x∈[ , π],利用正弦函數(shù)的定義域和值域求得函數(shù)g(x)的值域.
【考點(diǎn)精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí)點(diǎn),需要掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓和定點(diǎn),由圓外一點(diǎn)向圓引切線,切點(diǎn)為,且滿足

(1)求實(shí)數(shù),滿足的等量關(guān)系

(2)求線段長(zhǎng)的最小值;

(3)若以為圓心所作的圓與圓有公共點(diǎn),試求半徑取最小值時(shí)圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的方程的兩個(gè)根分別為其中 ,則的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) , .

(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;

(2)若函數(shù)有兩個(gè)零點(diǎn),試求的取值范圍;

(3)證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△OAB的頂點(diǎn)坐標(biāo)為O(0,0),A(2,9),B(6,﹣3),點(diǎn)P的橫坐標(biāo)為14,且 ,點(diǎn)Q是邊AB上一點(diǎn),且 =0.
(1)求實(shí)數(shù)λ的值與點(diǎn)P的坐標(biāo);
(2)求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知多面體中,四邊形為平行四邊形, 平面,且, , , .

(Ⅰ)求證:平面平面

(Ⅱ)若直線與平面所成的角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱柱中,底面是正方形,側(cè)棱底面, 的中點(diǎn).

)求證: 平面

)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠DAB=60°.側(cè)面PAD為正三角形,且平面PAD⊥平面ABCD,則下列說(shuō)法錯(cuò)誤的是(  )

A.在棱AD上存在點(diǎn)M,使AD⊥平面PMB
B.異面直線AD與PB所成的角為90°
C.二面角P﹣BC﹣A的大小為45°
D.BD⊥平面PAC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題錯(cuò)誤的是 ( )

A. 如果平面平面,那么平面內(nèi)一定存在直線平行于平面

B. 如果平面不垂直平面,那么平面內(nèi)一定不存在直線垂直于平面

C. 如果平面平面,平面平面,且,那么

D. 如果平面平面,那么平面內(nèi)所有直線都垂直于平面

查看答案和解析>>

同步練習(xí)冊(cè)答案