(2013•內江二模)某地甲、乙、丙、丁四個企業(yè)分別有工人150人,150人,400人,300人,為了解工人收入情況,用分層抽樣的方法從這四個企業(yè)中抽取40人進行調查,則應從丙企業(yè)抽
16
16
人.
分析:先求出每個個體被抽到的概率,再用該層的個體數(shù)乘以每個個體被抽到的概率等于該層應抽取的個體數(shù).
解答:解:每個個體被抽到的概率等于
40
150+150+400+300
=
1
25
,400×
1
25
=16,
故答案為 16.
點評:本題主要考查分層抽樣的定義和方法,用每層的個體數(shù)乘以每個個體被抽到的概率等于該層應抽取的個體數(shù),屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•內江二模)已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率e=
2
3
3
,過點A(0,-b)和B(a,0)的直線與原點的距離為
3
2

(1)求雙曲線的方程;
(2)直線y=kx+m(k≠0,m≠0)與該雙曲線交于不同的兩點C、D,且C、D兩點都在以A為圓心的同一圓上,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•內江二模)如圖,在多面體ABCDEF中,ABCD為菱形,∠ABC=60°,EC⊥面ABCD,F(xiàn)A⊥面ABCD,G為BF的中點,若EG∥面ABCD.
(Ⅰ)求證:EG⊥面ABF;
(Ⅱ)若AF=AB,求二面角B-EF-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•內江二模)已知數(shù)列{an}的首項a1=5,前n項和為Sn,且Sn+1=2Sn+n+5(n∈N*
(1)證明數(shù)列{an+1}是等比數(shù)列;
(2)令f(x)=a1x+a2x2+…+anxn,求函數(shù)f(x)在點x=1處的導數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•內江二模)設集合A={x|x2+3x<0},B={x|y=
-x-1
},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•內江二模)已知復數(shù)z=2i(2+i)(i為虛數(shù)單位),則復數(shù)z在復平面上所對應的點在( 。

查看答案和解析>>

同步練習冊答案