設(shè)函數(shù),其中,曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為軸
(1)若為的極值點(diǎn),求的解析式
(2)若過(guò)點(diǎn)可作曲線(xiàn)的三條不同切線(xiàn),求的取值范圍。
解:由
又由曲線(xiàn)處的切線(xiàn)方程為軸,得
故…………………………… 2分
(I)又,所以,…………………………… 4分
(II)處的切線(xiàn)方程為
,而點(diǎn)(0,2)在切線(xiàn)上,所以,
化簡(jiǎn)得……………… 6分
過(guò)點(diǎn)(0,2)可作的三條切線(xiàn),等價(jià)于方程
有三個(gè)相異的實(shí)根,即等價(jià)于方程有三個(gè)相異的實(shí)根.
故有
|
|
0 |
|
|
|
|
+ |
0 |
- |
0 |
+ |
|
↗ |
極大值 |
↘ |
極小值 |
↗ |
由 的單調(diào)性知:要使有三個(gè)相異的實(shí)根,當(dāng)且僅當(dāng)時(shí)滿(mǎn)足,即,.
的取值范圍是……………………………………………… 12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省中山市實(shí)驗(yàn)高中高三11月階段考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
設(shè),其中,曲線(xiàn)在點(diǎn)處的切線(xiàn)垂直于軸.
(1)求的值;
(2)求函數(shù)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省四地六高三第三次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿(mǎn)分14分)已知函數(shù)
(1)求函數(shù)的極值點(diǎn);
(2)若直線(xiàn)過(guò)點(diǎn)(0,—1),并且與曲線(xiàn)相切,求直線(xiàn)的方程;
(3)設(shè)函數(shù),其中,求函數(shù)在上的最小值.(其中e為自然對(duì)數(shù)的底數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:哈三中2011屆度上學(xué)期高三學(xué)年9月份月考數(shù)學(xué)試題(文史類(lèi)) 題型:解答題
(本小題滿(mǎn)分12分)設(shè)函數(shù),其中,曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為軸
(1)若為的極值點(diǎn),求的解析式
(2)若過(guò)點(diǎn)可作曲線(xiàn)的三條不同切線(xiàn),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù),其中,曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為.
(Ⅰ)確定的值;
(Ⅱ)設(shè)曲線(xiàn)在點(diǎn)及處的切線(xiàn)都過(guò)點(diǎn)(0,2)。證明:當(dāng)時(shí),;
(Ⅲ)若過(guò)點(diǎn)(0,2)可作曲線(xiàn)的三條不同切線(xiàn),求的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com