已知橢圓與雙曲線有相同的焦點(diǎn),且橢圓過(guò)點(diǎn)
(1)求橢圓方程; 
(2)直線過(guò)點(diǎn)交橢圓于兩點(diǎn),且,求直線的方程。
;
①依題意得,雙曲線方程為
∴雙曲線兩焦點(diǎn)為(0,-1),(0,1)
設(shè)所求橢圓方程為   
                  
又∵點(diǎn)在橢圓上
        
整理得
解得,∴         
∴橢圓方程為    
②依題意得M為AB中點(diǎn),設(shè)
直線方程為,則
,得 
整理得
∵點(diǎn)A、B互異

解得            
直線方程為
      
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分10分)選修4-1:幾何證明選講
如圖,已知的兩條角平分線相交于H,F上,且

(Ⅰ)證明:B、D、H、E四點(diǎn)共圓;
(Ⅱ)證明:平分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)是中心在原點(diǎn),長(zhǎng)軸在x軸上的橢圓的一個(gè)頂點(diǎn),離心率為,橢圓的左右焦點(diǎn)分別為F1F2 。
(Ⅰ)求橢圓方程;
(Ⅱ)點(diǎn)M在橢圓上,求⊿MF1F2面積的最大值;
(Ⅲ)試探究橢圓上是否存在一點(diǎn)P,使,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)的距離的最小值為,離心率為
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作直線、兩點(diǎn),試問(wèn):在軸上是否存在一個(gè)定點(diǎn),使為定值?若存在,求出這個(gè)定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在極坐標(biāo)系中,,求直線的極坐標(biāo)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,所在的平面和四邊形所在的平面垂直,且,,,則點(diǎn)在平面內(nèi)的軌跡是 (   )
A.圓的一部分
B.橢圓的一部分
C.雙曲線的一部分
D.拋物線的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求到兩定點(diǎn),距離相等的點(diǎn)的坐標(biāo)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

[2014·汕頭質(zhì)檢]若三點(diǎn)A(2,3),B(3,2),C(,m)共線,則實(shí)數(shù)m=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

從雙曲線=1的左焦點(diǎn)F引圓x2 + y2 = 3的切線FP交雙曲線右支于點(diǎn)P,T為切點(diǎn),M為線段FP的中點(diǎn),O為坐標(biāo)原點(diǎn),則| MO | – | MT | 等于              。

查看答案和解析>>

同步練習(xí)冊(cè)答案