【題目】住在同一城市的甲、乙兩位合伙人,約定在當天下午420-500間在某個咖啡館相見商談合作事宜,他們約好當其中一人先到后最多等對方10分鐘,若等不到則可以離去,則這兩人能相見的概率為__________

【答案】

【解析】

設(shè)甲乙兩人第分鐘和第分鐘到達,得到,再得到甲乙兩人約好當其中一人先到后最多等對方10分鐘,即,利用面積比的幾何概型,即可求解.

因為乙兩位合伙人,約定在當天下午420-500間在某個咖啡館相見商談合作事宜,

設(shè)甲乙兩人各在第分鐘和第分鐘到達,

則樣本空間為,作出圖象,如圖所示,

則正方形的面積為,

又由甲乙兩人約好當其中一人先到后最多等對方10分鐘,即,

可得陰影部分的面積為

所以由幾何概型的概率計算公式,可得概率為.

故答案為:.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,圓的參數(shù)方程為為參數(shù)),過點作斜率為的直線與圓交于兩點.

(1)若圓心到直線的距離為,求的值;

(2)求線段中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點在橢圓上,橢圓的右焦點,直線過橢圓的右頂點,與橢圓交于另一點,與軸交于點.

1)求橢圓的方程;

2)若為弦的中點,是否存在定點,使得恒成立?若存在,求出點的坐標,若不存在,請說明理由;

3)若,交橢圓于點,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=lnx+ax2-xx0,aR).

(Ⅰ)討論函數(shù)fx)的單調(diào)性;

(Ⅱ)求證:當a≤0時,曲線y=fx)上任意一點處的切線與該曲線只有一個公共點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列幾個命題:①若,則;②,則互為相反數(shù)的否命題;③的逆命題;④,則互為倒數(shù)的逆否命題. 其中真命題的序號__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A,B分別是雙曲線的左右頂點,設(shè)過的直線PA,PB與雙曲線分別交于點MN,直線MNx軸于點Q,過Q的直線交雙曲線的于S,T兩點,且,則的面積( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(xa2+y224a0)及直線lxy+30.當直線l被圓C截得的弦長為時,求

(Ⅰ)a的值;

(Ⅱ)求過點(3,5)并與圓C相切的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,平面.

(1)證明:平面

(2)求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Cx2+y24x+30,過原點的直線l與圓C有公共點.

1)求直線l斜率k的取值范圍;

2)已知O為坐標原點,點P為圓C上的任意一點,求線段OP的中點M的軌跡方程.

查看答案和解析>>

同步練習冊答案