【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知過點的直線的參數(shù)方程是為參數(shù)).以平面直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程式為.

)求直線的普通方程和曲線的直角坐標(biāo)方程;

)若直線與曲線交于兩點,且,求實數(shù)的值.

【答案】,C.(1

【解析】試題分析:(1)直線的參數(shù)方程,消去參數(shù)即可得到普通方程,曲線的極坐標(biāo)方程是,化為,利用互化公式即可得到直角方程;

(2)將直線的參數(shù)方程代入方程,得到.由,解得,所以,再由,即可求解實數(shù)的值.

試題解析:

(1)直線的參數(shù)方程是為參數(shù)),

消去參數(shù)可得直線的普通方程為

曲線的極坐標(biāo)方程是,化為

所以曲線的直角坐標(biāo)方程為.

(2)將為參數(shù))代入方程,

.

.由,解得,所以

,∴,解得或1,

都滿足,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了對某課題進(jìn)行研究,用分層抽樣方法從三所高校的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人)

高校

相關(guān)人數(shù)

抽取人數(shù)

A

18


B

36

2

C

54


)求;

)若從高校抽取的人中選2人作專題發(fā)言,求這二人都來自高校的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1,求函數(shù)圖象在處的切線方程;

2,試討論方程的實數(shù)解的個數(shù);

3當(dāng)時,若對于任意的,都存在,使得,求滿足條件的正整數(shù)的取值的集合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知fx=-3x2+a6-ax+6.

1解關(guān)于a的不等式f1>0;

2若不等式fx>b的解集為-1,3,求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,點是圓上的任意一點,線段的垂直平分線與直線交于點

求點的軌跡方程;

若直線與點的軌跡有兩個不同的交點,且原點總在以為直徑的圓的內(nèi)部,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)yf(x)對于任意的x都滿足f(x+1)=-f(x),當(dāng)-1x<1,f(x)=x3,若函數(shù)g(x)=f(x)-loga|x|至少有6個零點,a的取值范圍是(  )

A. (5,) B.

C. (5,7) D. [5,7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓短軸的左右兩個端點分別為A,B,直線與x軸、y軸分別交于兩點E,F(xiàn),交橢圓于兩點C,D.

(1)若,求直線的方程;

(2)設(shè)直線AD,CB的斜率分別為,若,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有外形相同的球分裝三個盒子,每盒10個.其中,第一個盒子中7個球標(biāo)有字母A、3個球標(biāo)有字母B;第二個盒子中有紅球和白球各5個;第三個盒子中則有紅球8個,白球2個.試驗按如下規(guī)則進(jìn)行:先在第一號盒子中任取一球,若取得標(biāo)有字母A的球,則在第二號盒子中任取一個球;若第一次取得標(biāo)有字母B的球,則在第三號盒子中任取一個球.如果第二次取出的是紅球,則稱試驗成功,那么試驗成功的概率為(

A.0.59 B.0.54 C.0.8 D.0.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)滿足fx+y=fx+fy),當(dāng)x0時,有,且f1=﹣2

1)求f0)及f﹣1)的值;

2)判斷函數(shù)fx)的單調(diào)性,并利用定義加以證明;

3)求解不等式f2x﹣fx2+3x)<4

查看答案和解析>>

同步練習(xí)冊答案