【題目】設(shè)有一組圓,下列四個(gè)命題:①存在一條定直線與所有的圓均相切;②存在一條定直線與所有的圓均相交;③存在一條定直線與所有的圓均不相交;④所有的圓均不經(jīng)過原點(diǎn);其中真命題的個(gè)數(shù)為( )
A.1B.2C.3D.4
【答案】B
【解析】
根據(jù)圓的方程找出圓心坐標(biāo),發(fā)現(xiàn)滿足條件的所有圓的圓心在一條直線上,所以這條直線與所有的圓都相交,②正確;根據(jù)圖象可知這些圓互相內(nèi)含,不存在一條定直線與所有的圓均相切,不存在一條定直線與所有的圓均不相交,所以①③錯(cuò);利用反證法,假設(shè)經(jīng)過原點(diǎn),將代入圓的方程,因?yàn)樽筮厼槠鏀?shù),右邊為偶數(shù),故不存在使上式成立,假設(shè)錯(cuò)誤,則圓不經(jīng)過原點(diǎn),④正確.
解:根據(jù)題意得:圓心,圓心在直線上,故存在直線與所有圓都相交,選項(xiàng)②正確;
考慮兩圓的位置關(guān)系,
圓:圓心,半徑為,
圓:圓心,,即,半徑為,
兩圓的圓心距,
兩圓的半徑之差,
任取或2時(shí),,含于之中,選項(xiàng)①錯(cuò)誤;
若取無窮大,則可以認(rèn)為所有直線都與圓相交,選項(xiàng)③錯(cuò)誤;
將帶入圓的方程,則有,即,
因?yàn)樽筮厼槠鏀?shù),右邊為偶數(shù),故不存在使上式成立,即所有圓不過原點(diǎn),選項(xiàng)④正確.
則正確命題是②④.
故選:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln (x+1)- -x,a∈R.
(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面,,,,,分別是,的中點(diǎn).
(1)求三棱錐的體積;
(2)若異面直線與所成的角為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某土特產(chǎn)超市為預(yù)估2020年元旦期間游客購買土特產(chǎn)的情況,對2019年元旦期間的90位游客購買情況進(jìn)行統(tǒng)計(jì),得到如下人數(shù)分布表.
購買金額(元) | ||||||
人數(shù) | 10 | 15 | 20 | 15 | 20 | 10 |
(1)求購買金額不少于45元的頻率;
(2)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認(rèn)為購買金額是否少于60元與性別有關(guān).
不少于60元 | 少于60元 | 合計(jì) | |
男 | 40 | ||
女 | 18 | ||
合計(jì) |
附:參考公式和數(shù)據(jù):,.
附表:
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | |
0.150 | 0.100 | 0.050 | 0.010 | 0.005 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是橢圓的左焦點(diǎn),且橢圓經(jīng)過點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(diǎn)的直線交橢圓于、兩點(diǎn),線段的中點(diǎn)為,過且與垂直的直線與軸和軸分別交于、兩點(diǎn),記、的面積分別為、.若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司即將推車一款新型智能手機(jī),為了更好地對產(chǎn)品進(jìn)行宣傳,需預(yù)估市民購買該款手機(jī)是否與年齡有關(guān),現(xiàn)隨機(jī)抽取了50名市民進(jìn)行購買意愿的問卷調(diào)查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強(qiáng),調(diào)查結(jié)果用莖葉圖表示如圖所示.
(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購買該款手機(jī)與年齡有關(guān)?
(2)從購買意愿弱的市民中按年齡進(jìn)行分層抽樣,共抽取5人,從這5人中隨機(jī)抽取2人進(jìn)行采訪,求這2人都是年齡大于40歲的概率.
附: .
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列、滿足,其中數(shù)列的前項(xiàng)和,
(1)若數(shù)列是首項(xiàng)為.公比為的等比數(shù)列,求數(shù)列的通項(xiàng)公式;
(2)若,求證:數(shù)列滿足,并寫出的通項(xiàng)公式;
(3)在(2)的條件下,設(shè),求證中任意一項(xiàng)總可以表示成該數(shù)列其它兩項(xiàng)之積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com