已知函數(shù).
(Ⅰ)當(dāng)時(shí),求證:函數(shù)在上單調(diào)遞增;
(Ⅱ)若函數(shù)有三個(gè)零點(diǎn),求的值.
(I)利用導(dǎo)數(shù)法求解單調(diào)區(qū)間即可證明;(II)t=2
解析試題分析:(I)f’(x)=axlna+2x-lna=(ax-1) lna +2x
當(dāng)a>1時(shí),lna >0
當(dāng)x∈(0,+∞)時(shí),ax-1>0,2x>0
∴f’(x)>0,∴f(x)在(0,+∞)↑
(II)當(dāng)a>1時(shí),x∈(-∞,0)時(shí),ax-1<0,2x<0
f’(x)<0,∴f(x)在(-∞,0)↓
當(dāng)0<a<1時(shí), x∈(0,+∞)時(shí),lna <0, ax-1<0,
f’(x)>0,f(x)在(0,+∞)↑
x ∈(-∞,0)時(shí), ax-1>0, lna <0
f’(x)<0, f(x)在(-∞,0)↓
∴當(dāng)a>0且a≠1時(shí),f(x) 在(-∞,0)↓,f(x)在(0,+∞)↑
∴x=0是f(x)在k上唯一極小值點(diǎn),也是唯一最小值點(diǎn).
f(x)min=f(0)=1
若y=[f(x)-t]-1有三個(gè)零點(diǎn),即|f(x)-t|=1,f(x)=t±1有三個(gè)根,所以t+1>t-1
∴t-1="f" (x)min= 1,∴t=2
考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):導(dǎo)數(shù)本身是個(gè)解決問(wèn)題的工具,是高考必考內(nèi)容之一,高考往往結(jié)合函數(shù)甚至是實(shí)際問(wèn)題考查導(dǎo)數(shù)的應(yīng)用,求單調(diào)、最值、完成證明等,請(qǐng)注意歸納常規(guī)方法和常見(jiàn)注意點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)任意,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知f(x)=(x∈R)在區(qū)間[-1,1]上是增函數(shù).
(1)求實(shí)數(shù)a的值組成的集合A;
(2)設(shè)關(guān)于x的方程f(x)=的兩個(gè)非零實(shí)根為x1、x2.試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)為大于零的常數(shù)。
(1)若函數(shù)內(nèi)調(diào)遞增,求a的取值范圍;
(2)求函數(shù)在區(qū)間[1,2]上的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,設(shè)函數(shù)
(1)若,求函數(shù)在上的最小值
(2)判斷函數(shù)的單調(diào)性
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)在及時(shí)取得極值.
(1)求、b的值;
(2)若對(duì)于任意的,都有成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
(1)求函數(shù)在上的最小值;
(2)若函數(shù)與的圖像恰有一個(gè)公共點(diǎn),求實(shí)數(shù)a的值;
(3)若函數(shù)有兩個(gè)不同的極值點(diǎn),且,求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)直線為曲線的切線,且經(jīng)過(guò)原點(diǎn),求直線的方程及切點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是實(shí)數(shù),函數(shù)。
(Ⅰ)若,求的值及曲線在點(diǎn)處的切線方程;
(Ⅱ)求在區(qū)間上的最大值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com