設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過原點(diǎn),而且與橢圓相交于兩點(diǎn),為線段的中點(diǎn).
(1)問:直線與能否垂直?若能,之間滿足什么關(guān)系;若不能,說明理由;
(2)已知為的中點(diǎn),且點(diǎn)在橢圓上.若,求橢圓的離心率.
(1)直線與不能垂直;(2)
解析試題分析:(1)設(shè)直線的方程為,與橢圓方程聯(lián)立,消去整理為關(guān)于的一元二次方程,因?yàn)橛袃蓚(gè)交點(diǎn)則判別式應(yīng)大于0,由韋達(dá)定理可得根與系數(shù)的關(guān)系,用中點(diǎn)坐標(biāo)公式求點(diǎn)的坐標(biāo)。求出直線的斜率,假設(shè)兩直線垂直則斜率相乘等于,解出的關(guān)系式,根據(jù)關(guān)系式及橢圓中的關(guān)系判斷假設(shè)成立與否。(2)∵M(jìn)為ON的中點(diǎn),M為AB的中點(diǎn),∴四邊形OANB為平行四邊形.
∵,∴四邊形OANB為矩形,∴,轉(zhuǎn)化為向量問題,可得的關(guān)系式。由中點(diǎn)坐標(biāo)公式可得點(diǎn)的坐標(biāo),將其代入橢圓方程,與上式聯(lián)立消去即可得之間滿足的關(guān)系式。將代入之間的關(guān)系式,可求其離心率。
試題解析:解答:(1)∵斜率為1的直線不經(jīng)過原點(diǎn),而且與橢圓相交于兩點(diǎn),
∴可以設(shè)直線的方程為.
∵,∴,
∴. ① 1分
∵直線與橢圓相交于兩點(diǎn),∴
. ② 2分
且. ③ 3分
∵為線段的中點(diǎn),∴,
∴,∴. 4分
假設(shè)直線與能垂直.
∵直線的斜率為1,∴直線的斜率為-1,
∴,∴. 5分
∵在橢圓方程中,,
∴假設(shè)不正確,在橢圓中直線與不能垂直. 6分
(2)∵M(jìn)為ON的中點(diǎn),M為AB的中點(diǎn),∴四邊形OANB為平行四邊形.
∵,∴四邊形OANB為矩形,∴, 7分
∴,∴,∴,
∴,
∴,整理得. 8分
∵點(diǎn)在橢圓上,∴,∴. 9分
此時(shí),滿足,
消去得,即. 10分
設(shè)橢圓的離心率為e,則,∴,
∴,∴,
∴,∵
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率與雙曲線的離心率互為倒數(shù),直線與以原點(diǎn)為圓心,以橢圓的短半軸長(zhǎng)為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn)為,直線過點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn),線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;
(3)設(shè)第(2)問中的與軸交于點(diǎn),不同的兩點(diǎn)在上,且滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,動(dòng)點(diǎn)滿足:點(diǎn)到定點(diǎn)與到軸的距離之差為.記動(dòng)點(diǎn)的軌跡為曲線.
(1)求曲線的軌跡方程;
(2)過點(diǎn)的直線交曲線于、兩點(diǎn),過點(diǎn)和原點(diǎn)的直線交直線于點(diǎn),求證:直線平行于軸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,拋物線上的點(diǎn)到的距離為2,且的橫坐標(biāo)為1.直線與拋物線交于,兩點(diǎn).
(1)求拋物線的方程;
(2)當(dāng)直線,的傾斜角之和為時(shí),證明直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的雙曲線經(jīng)過、兩點(diǎn)
(1)求雙曲線的方程;
(2)設(shè)直線交雙曲線于、兩點(diǎn),且線段被圓:三等分,求實(shí)數(shù)、的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,直線與圓相切.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓的交點(diǎn)為,求弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
拋物線,其準(zhǔn)線方程為,過準(zhǔn)線與軸的交點(diǎn)做直線交拋物線于兩點(diǎn).
(1)若點(diǎn)為中點(diǎn),求直線的方程;
(2)設(shè)拋物線的焦點(diǎn)為,當(dāng)時(shí),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓上的點(diǎn)到左右兩焦點(diǎn)的距離之和為,離心率為.
(1)求橢圓的方程;
(2)過右焦點(diǎn)的直線交橢圓于兩點(diǎn),若軸上一點(diǎn)滿足,求直線的斜率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓兩焦點(diǎn)坐標(biāo)分別為,,且經(jīng)過點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn),直線與橢圓交于兩點(diǎn).若△是以為直角頂點(diǎn)的等腰直角三角形,試求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com