【題目】設(shè)函數(shù)f(x)=3ax2﹣2(a+b)x+b,(0≤x≤1)其中a>0,b為任意常數(shù).
(I)若b= ,f(x)=|x﹣ |在x∈[0,1]有兩個(gè)不同的解,求實(shí)數(shù)a的范圍.
(II)當(dāng)|f(0)|≤2,|f(1)|≤2時(shí),求|f(x)|的最大值.
【答案】解:(I)
①當(dāng) 時(shí),則 ,即3ax2﹣2ax=0,解得x=0
②當(dāng) 時(shí),則 ,即3ax2﹣2(a+1)x+1=0
令t(x)=3ax2﹣2(a+1)x+1,因?yàn)? ,只要t(1)=a﹣1≥0即可
所以a≥1
(II)設(shè)|f(x)|的最大值為M
①當(dāng) ,函數(shù)f(x)在[0,1]遞減函數(shù),M=|f(0)|≤2
②當(dāng) ,函數(shù)f(x)在[0,1]遞增函數(shù),M=|f(1)|≤2
③當(dāng) 時(shí),即﹣a<b<2a時(shí),
(。┊(dāng) 時(shí),即
則 ,則f(1)﹣ = >0
所以 M≤2
(ⅱ)當(dāng) 時(shí),即 時(shí),可得 ,即
則f(0)﹣ >0
所以M≤2
綜上M=2,當(dāng)a=2,b=2,f(x)=12x2﹣12x+2,M=2
【解析】(Ⅰ)通過(guò)討論x的范圍,去掉絕對(duì)值,關(guān)于a的不等式,求出a的范圍即可;(Ⅱ)求出函數(shù)的對(duì)稱軸,通過(guò)討論a的范圍,確定函數(shù)的單調(diào)性,求出|f(x)|的最大值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識(shí),掌握當(dāng)時(shí),拋物線開(kāi)口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開(kāi)口向下,函數(shù)在上遞增,在上遞減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}是各項(xiàng)都為正數(shù)的等比數(shù)列,其前n項(xiàng)和為Sn , 且S2=3,S4=15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}是等差數(shù)列,且b3=a3 , b5=a5 , 試求數(shù)列{bn}的前n項(xiàng)和Mn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地4個(gè)蔬菜大棚頂部,陽(yáng)光照在一棵棵茁壯生長(zhǎng)的蔬菜上.這些采用水培、無(wú)土栽培方式種植的各類蔬菜,成為該地區(qū)居民爭(zhēng)相購(gòu)買的對(duì)象.過(guò)去50周的資料顯示,該地周光照量(小時(shí))都在30以上.其中不足50的周數(shù)大約有5周,不低于50且不超過(guò)70的周數(shù)大約有35周,超過(guò)70的大約有10周.根據(jù)統(tǒng)計(jì)某種改良黃瓜每個(gè)蔬菜大棚增加量(百斤)與每個(gè)蔬菜大棚使用農(nóng)夫1號(hào)液體肥料(千克)之間對(duì)應(yīng)數(shù)據(jù)為如圖所示的折線圖:
(Ⅰ)依據(jù)數(shù)據(jù)的折線圖,用最小二乘法求出關(guān)于的線性回歸方程;并根據(jù)所求線性回歸方程,估計(jì)如果每個(gè)蔬菜大棚使用農(nóng)夫1號(hào)肥料10千克,則這種改良黃瓜每個(gè)蔬菜大棚增加量是多少斤?
(Ⅱ)因蔬菜大棚對(duì)光照要求較大,某光照控制儀商家為應(yīng)對(duì)惡劣天氣對(duì)光照的影響,為該基地提供了部分光照控制儀,該商家希望安裝的光照控制儀盡可能運(yùn)行,但每周光照控制儀最多可運(yùn)行臺(tái)數(shù)受周光照量限制,并有如下關(guān)系:
周光照量(單位:小時(shí)) | |||
光照控制儀最多可運(yùn)行臺(tái)數(shù) | 3 | 2 | 1 |
若某臺(tái)光照控制儀運(yùn)行,則該臺(tái)光照控制儀周利潤(rùn)為5000元;若某臺(tái)光照控制儀未運(yùn)行,則該臺(tái)光照控制儀周虧損800元,欲使商家周總利潤(rùn)的均值達(dá)到最大,應(yīng)安裝光照控制儀多少臺(tái)?
附:回歸方程系數(shù)公式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一元二次不等式ax2+bx+c>0的解集是(﹣ ,2),則cx2+bx+a<0的解集是( )
A.(﹣3, )
B.(﹣∞,﹣3)∪( ,+∞)
C.(﹣2, )
D.(﹣∞,﹣2)∪( ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四面體ABCD中,△ABC是正三角形,AD=CD.
(1)證明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD.若E為棱BD上與D不重合的點(diǎn),且AE⊥EC,求四面體ABCE與四面體ACDE的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:
(1)函數(shù)y=tanx在定義域內(nèi)單調(diào)遞增;
(2)若α,β是銳角△ABC的內(nèi)角,則sinα>cosβ;
(3)函數(shù)y=cos( x+ )的對(duì)稱軸x= +kπ,k∈Z;
(4)函數(shù)y=sin2x的圖象向左平移 個(gè)單位,得到y(tǒng)=sin(2x+ )的圖象.
其中正確的命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義域?yàn)镈的函數(shù)y=f(x),若同時(shí)滿足下列條件:
①f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減;
②存在區(qū)間[a,b]D,使f(x)在[a,b]上的值域?yàn)閇a,b],則把y=f(x),x∈D叫閉函數(shù).
(1)求閉函數(shù)y=x3符合條件②的區(qū)間[a,b];
(2)判斷函數(shù)f(x)= x+ ,(x>0)是否為閉函數(shù)?并說(shuō)明理由;
(3)已知[a,b]是正整數(shù),且定義在(1,m)的函數(shù)y=k﹣ 是閉函數(shù),求正整數(shù)m的最小值,及此時(shí)實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)拋物線焦點(diǎn)且傾斜角的直線與拋物線交于點(diǎn) 的面積為.
(I)求拋物線的方程;
(II)設(shè)是直線上的一個(gè)動(dòng)點(diǎn),過(guò)作拋物線的切線,切點(diǎn)分別為直線與直線軸的交點(diǎn)分別為點(diǎn)是以為圓心為半徑的圓上任意兩點(diǎn),求最大時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com