如圖,已知平面,平面,△

等邊三角形,,的中點(diǎn).

(1) 求證:平面;

(2) 求證:平面平面;

(3) 求直線和平面所成角的正弦值.

同下


解析:

設(shè),建立如圖所示的坐標(biāo)系

.

的中點(diǎn),∴.            

 (1) 證明  ,     

平面,∴平面.   

 (2) 證明  ∵,  

,∴.          

平面,又平面,

∴平面平面.                                

 (3) 解  設(shè)平面的法向量為,由可得:

   ,取.          

    又,設(shè)和平面所成的角為,則

   .

∴直線和平面所成角的正弦值為.       

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濱州一模)如圖,已知平面ABEF⊥平面ABCD,四邊形ABEF為矩形,四邊形ABCD為直角梯形,∠DAB=90°,AB∥CD,AD=AF=4,AB=2CD=8
(Ⅰ)求證:AF∥平面BCE;
(Ⅱ)求證:AC⊥平面BCE;
(Ⅲ)求四棱錐C-ABEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:已知平面四邊形ABCD,AC、BD相交于O,AB=AD,CB=CD,

∠ABC=120°,且PA⊥平面ABCD.

(1)若AB=PA=,求P到直線BC的距離;

(2)求證平面PBD⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年黑龍江省高三上學(xué)期期末考試數(shù)學(xué)文卷 題型:解答題

 

(本小題滿分12分)如圖,已知平面,平面,為等邊三角形,,中點(diǎn).

                     

(1)求證:平面;

       (2)求證:平面平面;

       (3)求直線與平面所成角的正弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知平面ABEF⊥平面ABCD,四邊形ABEF為矩形,四邊形ABCD為直角梯形,∠DAB=90°,AB∥CD,AD=AF=4,AB=2CD=8
(Ⅰ)求證:AF∥平面BCE;
(Ⅱ)求證:AC⊥平面BCE;
(Ⅲ)求四棱錐C-ABEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)如圖,已知平面,平面,為等邊三角形,,中點(diǎn).

       (1)求證:平面

       (2)求證:平面平面;

       (3)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案