如圖:已知平面四邊形ABCD,AC、BD相交于O,AB=AD,CB=CD,
∠ABC=120°,且PA⊥平面ABCD.
(1)若AB=PA=,求P到直線BC的距離;
(2)求證平面PBD⊥平面PAC.
(1)(2)見解析
(1)延長(zhǎng)CB,過A在平面內(nèi)作AE⊥CB,垂足為E.
∵∠ABC=120°,∴∠ABE=60°,在Rt△ABE中:AE=AB·sin60°=·=
∵PA⊥平面,AE⊥EB,∴AE是PE在平面內(nèi)的射影,
∴PE⊥EB,∴PE為點(diǎn)P到BC的距離.在Rt△PAE中:PE=.
(2)在四邊形ABCD中,取BD中點(diǎn)O,連AO、CO,
∵AB=AD,CD=CB,BO=OD,
∴AO⊥BD,CO⊥BD,
∴A、O、C共線,∴AC⊥BD.
又PA⊥,∴PA⊥BD,
∴BD⊥平面PAC,∵BD平面PBD,
∴平面PBD⊥平面PAC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年廣東省珠海市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年廣東省珠海市高三(下)質(zhì)量監(jiān)測(cè)數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com