已知點(diǎn)P(x1,y1),Q(x2,y2)是函數(shù)f(x)=sin(ωx+Φ)(ω>0,0<Φ<)圖象上的任意兩點(diǎn),若|y1-y2|=2時(shí),|x1-x2|的最小值為,且函數(shù)f(x)的圖象經(jīng)過點(diǎn)(0,2),在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且2sinAsinC+cos2B=1.

(1)求函數(shù)f(x)的解析式;

(2)求g(B)=f(B)+f(B+)的取值范圍.

 

(1);(2)[0,2]

【解析】試題分析:已知條件“若|y1-y2|=2時(shí),|x1-x2|的最小值為”實(shí)質(zhì)是告知周期的長(zhǎng)度,據(jù)此可求出ω,進(jìn)而求出Φ;(2)過程中將(2x+)整體代換,會(huì)起到簡(jiǎn)化步驟的作用。

試題解析:(1)由題意知,,又 2分

, 1分

1分

(2)

2分

1分

,得 2分

2分

即為所求取值范圍 1分

考點(diǎn):三角函數(shù)的圖象及其性質(zhì),三角函數(shù)恒等變形

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=tan(2x+φ)(|φ|<
π
2
)的對(duì)稱中心是點(diǎn)(
π
12
,0),則φ的值是(  )
A、-
π
6
B、
π
3
C、-
π
6
或 
π
3
D、-
π
12
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)(x,y)滿足
x≥0
y≥0
x+y≤1
,則u=y-x的最小值是( 。
A、-2B、-1C、0D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x-4+2(a>0,且a≠1)的圖象過定點(diǎn)A,直線(m+1)x+(m-1)y-2m=0過定點(diǎn)B,則經(jīng)過A,B的直線方程為(  )
A、2x-y-1=0
B、2x+y-1=0
C、x-2y-1=0
D、2x-y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆四川省成都市新都區(qū)高三診斷測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=lnx+ax2-(a+1)x(a∈R).

(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;

(2)當(dāng)a>0時(shí),若f(x)在區(qū)間[1,e]上的最小值為-2,求實(shí)數(shù)a的值;

(3)若對(duì)?x1,x2∈(0,+∞),x1<x2,且f(x1)+x1<f(x2)+x2恒成立,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆四川省成都市新都區(qū)高三診斷測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an+2=an+1-an(n∈N*),a1=1,a2=2,則S2014=_________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆四川省成都市新都區(qū)高三診斷測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

在△ABC中,三內(nèi)角A,B,C成等差數(shù)列,b=6,則△ABC的外接圓半徑為( )

A.6 B.12 C.2 D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆四川省成都市新都區(qū)高三診斷測(cè)試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)p:(x-2)(y-5)≠0;q:x≠2或y≠5,則p是q的( )條件

A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆四川省成都市高三10月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)x∈R,若函數(shù)f(x)為單調(diào)遞增函數(shù),且對(duì)任意實(shí)數(shù)x,都有f[f(x)-ex]=e+1(e是自然對(duì)數(shù)的底數(shù)),則f(ln2)的值等于( )

A.1 B.e+1 C.3 D.e+3

 

查看答案和解析>>

同步練習(xí)冊(cè)答案