橢圓的左焦點為F,直線x=m與橢圓相交于點A、B,當△FAB的周長最大時,△FAB的面積是   .
3a2

試題分析:設(shè)橢圓的右焦點為E.如圖:

由橢圓的定義得:△FAB的周長:AB+AF+BF=AB+(4a-AE)+(4a-BE)=8a+AB-AE-BE;
∵AE+BE≥AB;
∴AB-AE-BE≤0,當AB過點E時取等號;
∴AB+AF+BF=8a+AB-AE-BE≤8a;
即直線x=m過橢圓的右焦點E時△FAB的周長最大;
此時△FAB的高為:EF=2a.
此時直線x=m=c=1;
把x=1代入橢圓的方程得:y=±
∴AB=3a.所以:△FAB的面積等于:SFAB=
×3a×EF=×3a×2a=3a2故答案為3a2
點評:中檔題,在解決涉及到圓錐曲線上的“焦點三角形”問題時,圓錐曲線的定義往往是解題的突破口.解決本題的關(guān)鍵在于利用定義求出周長的表達式.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

在拋物線上,橫坐標為的點到焦點的距離為,則的值為(   )
A.0.5B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓O,直線l與橢圓C相交于P、Q兩點,O為原點.
(Ⅰ)若直線l過橢圓C的左焦點,且與圓O交于AB兩點,且,求直線l的方程;
(Ⅱ)如圖,若重心恰好在圓上,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過雙曲線的右焦點作圓的切線(切點為),交軸于點.若為線段的中點,則雙曲線的離心率為
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓和雙曲線有相同的焦點,則實數(shù)的值是 (    )
A.B.C.5D.9

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線的左右頂點分別是,點是雙曲線上異于點的任意一點。若直線的斜率之積等于2,則該雙曲線的離心率等于        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知曲線恰有三個點到直線距離為,則     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知經(jīng)過拋物線的焦點的直線交拋物線于兩點,滿足,則弦的中點到準線的距離為____.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,以軸為始邊作兩個銳角,它們的終邊分別交單位圓于兩點.已知兩點的橫坐標分別是,

(1)求的值;(2)求的值.

查看答案和解析>>

同步練習冊答案