給出下列五個(gè)判斷:
①若非零向量、滿(mǎn)足,則向量、所在的直線互相平行或重合;
②在△ABC中,;
③已知向量、為非零向量,若,則;
④向量、滿(mǎn)足,則;
⑤已知向量、為非零向量,則有
其中正確的是    .(填入所有正確的序號(hào))
【答案】分析:①②由向量共線的定義與運(yùn)算性質(zhì)得①②正確.
③向量進(jìn)行數(shù)量積運(yùn)算時(shí)不能進(jìn)行約分.
所以cosθ=0,所以?xún)蓚(gè)向量的夾角是0°或180°,所以④正確.
⑤向量的運(yùn)算律不滿(mǎn)足結(jié)合律.
解答:解:①由向量共線的定義得①正確.
②利用向量的運(yùn)算性質(zhì)得所以②正確.
③向量進(jìn)行數(shù)量積運(yùn)算時(shí)不能進(jìn)行約分.
所以cosθ=0,所以?xún)蓚(gè)向量的夾角是0°或180°,所以④正確.
⑤向量的運(yùn)算律不滿(mǎn)足結(jié)合律.
點(diǎn)評(píng):本題主要考查數(shù)列有關(guān)的定義與運(yùn)算律以及運(yùn)算性質(zhì),解決此類(lèi)題目的關(guān)鍵是準(zhǔn)確記憶相關(guān)結(jié)論,細(xì)心運(yùn)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列五個(gè)判斷:
①若非零向量
a
、
b
滿(mǎn)足
a
b
,則向量
a
、
b
所在的直線互相平行或重合;
②在△ABC中,
AB
+
BC
+
CA
=
0
;
③已知向量
a
b
為非零向量,若
a
b
=
a
c
,則
b
=
c
;
④向量
a
、
b
滿(mǎn)足|
a
b
|=|
a
|•|
b
|
,則
a
b
;
⑤已知向量
a
、
b
為非零向量,則有(
a
b
)•
c
=
a
•(
b
c
)

其中正確的是
 
.(填入所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

給出下列五個(gè)判斷:
①若非零向量
a
、
b
滿(mǎn)足
a
b
,則向量
a
、
b
所在的直線互相平行或重合;
②在△ABC中,
AB
+
BC
+
CA
=
0

③已知向量
a
、
b
為非零向量,若
a
b
=
a
c
,則
b
=
c

④向量
a
、
b
滿(mǎn)足|
a
b
|=|
a
|•|
b
|
,則
a
b

⑤已知向量
a
、
b
為非零向量,則有(
a
b
)•
c
=
a
•(
b
c
)

其中正確的是______.(填入所有正確的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案