已知圓C的圓心為C(m,0),m<3,半徑為
5
,圓C與橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn).
(1)求圓C的標(biāo)準(zhǔn)方程
(2)若點(diǎn)P的坐標(biāo)為(4,4),試探究斜率為k的直線PF1與圓C能否相切,若能,求出橢圓E和直線PF1的方程;若不能,請(qǐng)說(shuō)明理由.
分析:(1)由已知可設(shè)圓C的方程為(x-m)2+y2=5(m<3),將點(diǎn)A的坐標(biāo)代入圓C的方程,得(3-m)2+1=5.由此能求出圓C的方程.
(2)直線PF1能與圓C相切,設(shè)直線PF1的方程為y=k(x-4)+4,若直線PF1與圓C相切,則k=
11
2
,或k=
1
2
.當(dāng)k=
11
2
時(shí),直線PF1與x軸的交點(diǎn)橫坐標(biāo)為
36
11
,不合題意,當(dāng)k=
1
2
時(shí),直線PF1與x軸的交點(diǎn)橫坐標(biāo)為-4,由此能求出橢圓E的方程.
解答:解:(1)由已知可設(shè)圓C的方程為(x-m)2+y2=5(m<3)
將點(diǎn)A的坐標(biāo)代入圓C的方程,得(3-m)2+1=5
即(3-m)2=4,解得m=1,或m=5
∵m<3∴m=1
∴圓C的方程為(x-1)2+y2=5.(6分)
(2)直線PF1能與圓C相切
依題意設(shè)直線PF1的方程為y=k(x-4)+4,即kx-y-4k+4=0
若直線PF1與圓C相切,則
|k-0-4k+4|
k2+1
=
5

∴4k2-24k+11=0,解得k=
11
2
,或k=
1
2

當(dāng)k=
11
2
時(shí),直線PF1與x軸的交點(diǎn)橫坐標(biāo)為
36
11
,不合題意,舍去
當(dāng)k=
1
2
時(shí),直線PF1與x軸的交點(diǎn)橫坐標(biāo)為-4,
∴c=4,F(xiàn)1(-4,0),F(xiàn)2(4,0)
∴由橢圓的定義得:2a=|AF1|+|AF2|=
(3+4)2+12
+
(3-4)2+12
=5
2
+
2
=6
2

a=3
2
,即a2=18,∴b2=a2-c2=2
直線PF1能與圓C相切,直線PF1的方程為x-2y+4=0,橢圓E的方程為
x2
18
+
y2
2
=1
.(14分)
點(diǎn)評(píng):本題考查圓的方程和橢圓方程的求法,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的圓心為C(m,0),m<3,半徑為an,圓n與橢圓Sn
x2
a2
+
y2
b2
=1(a>b>0)
有一個(gè)公共點(diǎn)an(3,1),bn分別是橢圓的左、右焦點(diǎn).
(1)求圓bn的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P的坐標(biāo)為(4,4),試探究斜率為k的直線n與圓Tn能否相切,若能,求出橢圓m∈N*和直線PF1的方程;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鄭州二模)已知圓C的圓心為C(m,0),m<3,半徑為
5
,圓C與離心率e>
1
2
的橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的其中一個(gè)公共點(diǎn)為A(3,l),F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn).
(I)求圓C的標(biāo)準(zhǔn)方程;
(II)若點(diǎn)P的坐標(biāo)為(4,4),試探究直線PF1與圓C能否相切?若能,設(shè)直線PF1與橢圓E相交于A,B兩點(diǎn),求△ABF2的面積;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:鄭州二模 題型:解答題

已知圓C的圓心為C(m,0),m<3,半徑為
5
,圓C與橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn).
(1)求圓C的標(biāo)準(zhǔn)方程
(2)若點(diǎn)P的坐標(biāo)為(4,4),試探究斜率為k的直線PF1與圓C能否相切,若能,求出橢圓E和直線PF1的方程;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆河北省高二下學(xué)期一調(diào)考試?yán)砜茢?shù)學(xué) 題型:解答題

(本題12分)已知圓C的圓心為C(m,0),(m<3),半徑為,圓C與橢圓E:  有一個(gè)公共點(diǎn)A(3,1),分別是橢圓的左、右焦點(diǎn);

(Ⅰ)求圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)若點(diǎn)P的坐標(biāo)為(4,4),試探究斜率為k的直線與圓C能否相切,若能,求出橢

圓E和直線的方程,若不能,請(qǐng)說(shuō)明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案