精英家教網 > 高中數學 > 題目詳情
如圖,是以為直徑的半圓上異于、的點,矩形所在的平面垂直于該半圓所在的平面,且

(Ⅰ)求證:;
(Ⅱ)設平面與半圓弧的另一個交點為
①試證:;
②若,求三棱錐的體積.
(Ⅰ)先證 (Ⅱ)①先證平面.

試題分析:(Ⅰ)∵平面平面
,,,
.     
又∵,∴.         
在以為直徑的半圓上,∴
又∵,,∴.   
又∵,∴.            
(Ⅱ)① ∵,,,
平面
又∵,平面平面,
.          
②取中點,的中點
中,,,∴
(Ⅰ)已證得,又已知
平面.  

點評:本題主要考查線面垂直與線面平行的證明以及三棱錐體積的計算.是對立體幾何知識的綜合考查,難度不大,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

長方體中,,的中點,則異面直線所成角的余弦值為
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖所示,在四面體中,,,兩兩互相垂直,且

(1)求證:平面平面;
(2)求二面角的大;
(3)若直線與平面所成的角為,求線段的長度.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在三棱錐中,側面與側面均為等邊三角形, ,中點.

(Ⅰ)證明:平面
(Ⅱ)求異面直線BS與AC所成角的大。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知長方體ABCD—A1B1ClD1內接于球O,底面ABCD是邊長為2的正方形,E為AA1的中點,OA⊥平面BDE,則球O的表面積為
A.8B.16:C.14D.18

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,四邊形PCBM是直角梯形,,.又,,直線AM與直線PC所成的角為

(1)求證:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知二面角α–l-β的平面角為45°,有兩條異面直線a,b分別垂直于平面,則異面直線所成角的大小是                。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

 是雙曲線 上一點,、分別是雙曲線的左、右頂點,直線,的斜率之積為.

(1)求雙曲線的離心率;
(2)過雙曲線的右焦點且斜率為1的直線交雙曲線于,兩點,為坐標原點,為雙曲線上一點,滿足,求的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

關于直線、與平面、,有下列四個命題: 
,則;   ②,則;
,則;  ④,則.
其中假命題的序號是:(   )
A.①、②B.③、④C.②、③D.①、④

查看答案和解析>>

同步練習冊答案