如圖,是橢圓的左、右頂點(diǎn),橢圓的離心率為,右準(zhǔn)線的方程為.

(1)求橢圓方程;
(2)設(shè)是橢圓上異于的一點(diǎn),直線于點(diǎn),以為直徑的圓記為. ①若恰好是橢圓的上頂點(diǎn),求截直線所得的弦長;
②設(shè)與直線交于點(diǎn),試證明:直線軸的交點(diǎn)為定點(diǎn),并求該定點(diǎn)的坐標(biāo).
(1) (2) ①

試題分析:(1)求橢圓方程,基本方法是待定系數(shù)法.關(guān)鍵是找全所需條件. 橢圓中三個(gè)未知數(shù)的確定只需兩個(gè)獨(dú)立條件,由可得值,(2) ①求圓被直線所截得弦長時(shí),利用半徑、半弦長、圓心到直線距離三者成勾股列等量關(guān)系,先分別確定直線的方程與圓K的方程,②證明直線軸的交點(diǎn)為定點(diǎn),實(shí)質(zhì)為求直線軸的交點(diǎn).由①知,點(diǎn)是關(guān)鍵點(diǎn),不妨設(shè)點(diǎn)的坐標(biāo)作為參數(shù),先表示直線的方程,與圓的方程聯(lián)立解出點(diǎn)P的坐標(biāo).由得直線的斜率,從而得直線的方程,再令,得點(diǎn)R的橫坐標(biāo)為,利用點(diǎn)M滿足化簡得
試題解析:(1)由,解得,故
(2)①因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034002033693.png" style="vertical-align:middle;" />,所以直線的方程為,從而的方程為 6分
又直線的方程為,故圓心到直線的距離為  8分
從而截直線所得的弦長為   9分
②證:設(shè),則直線的方程為,則點(diǎn)P的坐標(biāo)為,又直線的斜率為,而,
所以,從而直線的方程為 12分
,得點(diǎn)R的橫坐標(biāo)為      13分
又點(diǎn)M在橢圓上,所以,即,故,
所以直線軸的交點(diǎn)為定點(diǎn),且該定點(diǎn)的坐標(biāo)為      15分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知平面五邊形關(guān)于直線對稱(如圖(1)),,將此圖形沿折疊成直二面角,連接、得到幾何體(如圖(2))

(1)證明:平面;
(2)求平面與平面的所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線在點(diǎn)處的切線垂直相交于點(diǎn),直線與橢圓相交于,兩點(diǎn).

(1)求拋物線的焦點(diǎn)與橢圓的左焦點(diǎn)的距離;
(2)設(shè)點(diǎn)到直線的距離為,試問:是否存在直線,使得,成等比數(shù)列?若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C=1(ab>0)的離心率為,其左、右焦點(diǎn)分別是F1、F2,過點(diǎn)F1的直線l交橢圓CE、G兩點(diǎn),且△EGF2的周長為4.
(1)求橢圓C的方程;
(2)若過點(diǎn)M(2,0)的直線與橢圓C相交于兩點(diǎn)A、B,設(shè)P為橢圓上一點(diǎn),且滿足t (O為坐標(biāo)原點(diǎn)),當(dāng)||<時(shí),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線y2=4x上的點(diǎn)A到其焦點(diǎn)的距離是6,則點(diǎn)A的橫坐標(biāo)是            (    )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是橢圓的兩個(gè)焦點(diǎn),過的直線交橢圓于兩點(diǎn),若的周長為,則橢圓方程為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是雙曲線上不同的三點(diǎn),且連線經(jīng)過坐標(biāo)原點(diǎn),若直線的斜率乘積,則該雙曲線的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的兩條漸近線與拋物線的準(zhǔn)線分別交于兩點(diǎn),為坐標(biāo)原點(diǎn),的面積為,則雙曲線的離心率(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線的漸近線與拋物線的準(zhǔn)線所圍成的三角形面積為,則該雙曲線的離心率為(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案