(12分)已知函數(shù)。當時,函數(shù)的取值范圍恰為。
(1)求函數(shù)的解析式;(2)若向量,解關于的不等式
(Ⅰ)   (Ⅱ)  當時原不等式的解集為時原不等式的解集為時原不等式的解集為
解:(1)
上是增函數(shù)。由已知得
(2)

時原不等式的解集為
時原不等式的解集為時原不等式的解集為
時原不等式的解集為
考察閉區(qū)間上連續(xù)函數(shù)的值域,含參數(shù)不等式的解法。對綜合運用數(shù)學只得能力有較好的考察,要求思維嚴謹、邏輯清晰、計算準確。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

右圖是某種凈水水箱結構的設計草圖,其中凈水器是一個寬10cm、體積為3000cm3的長方體,長和高未定.凈水水箱的長、寬、高比凈水器的長、寬、高分別長20cm、20cm、60cm.若不計凈水器中的存水,則凈水水箱中最少可以存水             cm3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設函數(shù)的定義域為R,若存在常數(shù),使對一切實數(shù)均成立,則稱為“倍約束函數(shù)”.現(xiàn)給出下列函數(shù):①;②;③;④;⑤是定義在實數(shù)集R上的奇函數(shù),且對一切,均有.其中是“倍約束函數(shù)”的序號是

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

(本小題滿分12分)某商場以100元/件的價格購進一批襯衣,以高于進價的價格出售,銷售有淡季旺季之分.通過市場調查發(fā)現(xiàn):①銷售量(件)與襯衣標價x(元/件)在銷售旺季近似地符合函數(shù)關系:;在銷售淡季近似地符合函數(shù)關系:、、、為常數(shù);②在銷售旺季,商場以140元/件的價格銷售能獲得最大銷售利潤;③若稱①中時的標價x為襯衣的“臨界價格”,則銷售旺季的“臨界價格”是銷售淡季的“臨界價格”的1.5倍.
請根據(jù)上述信息,完成下面問題:
(Ⅰ)填出表格中空格的內容;
數(shù)量關系
銷售季節(jié)
標價
(元/件)
銷售量(件)
(含k、b1b­2
不同季節(jié)的銷售總利潤y(元)
與標價x(元/件)的函數(shù)關系式
旺 季
x

 
淡 季
x
 
 
  (Ⅱ)在銷售淡季,該商場要獲得最大銷售利潤,襯衣的標價應定為多少元才合適?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù),對于上的任意,有如下條件
; ②; ③.其中能使恒成立的條件序號是           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

定義運算“*”如下:則函數(shù)的最大值等于         .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

將函數(shù)的圖像繞坐標原點逆時針方向旋轉角,得到曲線.若對于每一個旋轉角,曲線都是一個函數(shù)的圖像,則的最大值為__________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
兩縣城A和B相聚20km,現(xiàn)計劃在兩縣城外以AB為直徑的半圓弧上選擇一點C建造垃圾處理廠,其對城市的影響度與所選地點到城市的的距離有關,對城A和城B的總影響度為城A與城B的影響度之和,記C點到城A的距離為x km,建在C處的垃圾處理廠對城A和城B的總影響度為y,統(tǒng)計調查表明:垃圾處理廠對城A的影響度與所選地點到城A的距離的平方成反比,比例系數(shù)為4;對城B的影響度與所選地點到城B的距離的平方成反比,比例系數(shù)為k ,當垃圾處理廠建在的中點時,對稱A和城B的總影響度為0.0065.(1)將y表示成x的函數(shù);(11)討論(1)中函數(shù)的單調性,并判斷弧上是否存在一點,使建在此處的垃圾處理廠對城A和城B的總影響度最小?若存在,求出該點到城A的距離,若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列各組函數(shù)中,為同一個函數(shù)的一組是( 。
A.f(x)=x-3與g(x)=
x2-6x+9
B.f(x)=πx2與面積y是半徑x的函數(shù)
C.f(x)=
x2-4
x-2
與g(x)=x+2
D.f(x)=|x-1|與g(t)=
t-1,(t≥1)
1-t,(t<1)

查看答案和解析>>

同步練習冊答案