【題目】丁四名同學(xué)和一名老師站成一排合影留念.若老師站在正中間,甲同學(xué)不與老師相鄰,乙同學(xué)與老師相鄰,則不同站法種數(shù)為( )

A.24B.12C.8D.6

【答案】C

【解析】

根據(jù)特殊元素優(yōu)先考慮原則,先排乙,再排甲,結(jié)合左右對稱原則求解.

由題:老師站中間,

第一步:排乙,乙與老師相鄰,2種排法;

第二步:排甲,此時甲有兩個位置可以站,2種排法;

第三步:排剩下兩位同學(xué),2種排法,

所以共8.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】187,253的最大公約數(shù)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)是定義在R上的偶函數(shù),且在(﹣∞,0]上是增函數(shù),若不等式f(a)≥f(x)對任意x∈[1,2]恒成立,則實數(shù)a的取值范圍是(
A.(﹣∞,1]
B.[﹣1,1]
C.(﹣∞,2]
D.[﹣2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex+x,對于曲線y=f(x)上橫坐標(biāo)成等差數(shù)列的三個點A,B,C,給出以下判斷: ①△ABC一定是鈍角三角形;
②△ABC可能是直角三角形;
③△ABC可能是等腰三角形;
④△ABC不可能是等腰三角形.
其中,正確的判斷是(
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班主任對全班50名學(xué)生作了一次調(diào)查,所得數(shù)據(jù)如表:

認(rèn)為作業(yè)多

認(rèn)為作業(yè)不多

總計

喜歡玩電腦游戲

18

9

27

不喜歡玩電腦游戲

8

15

23

總計

26

24

50

由表中數(shù)據(jù)計算得到K2的觀測值k≈5.059,于是(填“能”或“不能”)在犯錯誤的概率不超過0.01的前提下認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)多有關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)滿足:y=f(x﹣1)的圖象關(guān)于(1,0)點對稱,且當(dāng)x≥0時恒有f(x+2)=f(x),當(dāng)x∈[0,2)時,f(x)=ex﹣1,則f(2016)+f(﹣2017)=( )(其中e為自然對數(shù)的底)
A.1﹣e
B.e﹣1
C.﹣1﹣e
D.e+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a、b是兩條不同的直線,α、β是兩個不同的平面,則下面四個命題中不正確的是(
A.若a⊥b,a⊥α,bα,則b∥α
B.若a⊥b,a⊥α,b⊥β,則α⊥β
C.若a∥α,α⊥β,則α⊥β
D.若a⊥β,α⊥β,則a∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣x+2,則曲線y=f(x)在點(1,f(1))處的切線方程是(
A.4x﹣y﹣2=0
B.4x﹣y+2=0
C.2x﹣y=0
D.2x﹣y﹣3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正弦函數(shù)是奇函數(shù),f(x)sin(x21)是正弦函數(shù),因此f(x)sin(x21)是奇函數(shù),以上推理_______

查看答案和解析>>

同步練習(xí)冊答案