【題目】已知函數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)若對(duì)于任意,都有,求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ) ;(Ⅱ)單調(diào)遞增區(qū)間是; 的單調(diào)遞減區(qū)間是;(Ⅲ)答案見(jiàn)解析.
【解析】試題分析:(Ⅰ)由f(1)=0,f′(1)=1;從而寫(xiě)出切線方程即可;
(Ⅱ)根據(jù)導(dǎo)數(shù),求出導(dǎo)數(shù)等于0的根,分析導(dǎo)數(shù)函數(shù)值在根的左右的正負(fù)變化即可得出的單調(diào)區(qū)間;
(Ⅲ)當(dāng)時(shí),“”等價(jià)于“”.令, ,求導(dǎo)研究單調(diào)性求出在區(qū)間上的最大值為,即可求出實(shí)數(shù)的取值范圍.
試題解析:
(Ⅰ)因?yàn)楹瘮?shù),
所以,
.
又因?yàn)?/span>,
所以曲線在點(diǎn)處的切線方程為.
(Ⅱ)函數(shù)定義域?yàn)?/span>,
由(Ⅰ)可知, .
令解得.
與在區(qū)間上的情況如下:
x | |||
↘ | 極小值 | ↗ |
所以, 的單調(diào)遞增區(qū)間是;
的單調(diào)遞減區(qū)間是.
(Ⅲ)當(dāng)時(shí),“”等價(jià)于“”.
令, ,
, .
當(dāng)時(shí), ,所以在區(qū)間單調(diào)遞減.
當(dāng)時(shí), ,所以在區(qū)間單調(diào)遞增.
而,
所以在區(qū)間上的最大值為.
所以當(dāng)時(shí),對(duì)于任意,都有.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)函數(shù)f(x)=xsinx,現(xiàn)有下列命題:①函數(shù)f(x)是偶函數(shù);②函數(shù)f(x)的最小正周期是2π;③點(diǎn)(π,0)是函數(shù)f(x)的圖象的一個(gè)對(duì)稱(chēng)中心;④函數(shù)f(x)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.其中是真命題的是________.(寫(xiě)出所有真命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了迎接第二屆國(guó)際互聯(lián)網(wǎng)大會(huì),組委會(huì)對(duì)報(bào)名參加服務(wù)的名志愿者進(jìn)行互聯(lián)網(wǎng)知識(shí)測(cè)試,從這名志愿者中采用隨機(jī)抽樣的方法抽取人,所得成績(jī)?nèi)缦拢?/span> , , , , , , , , , , , , , , .
(1)作出抽取的人的測(cè)試成績(jī)的莖葉圖,以頻率為概率,估計(jì)這志愿者中成績(jī)不低于分的人數(shù);
(2)從抽取的成績(jī)不低于分的志愿者中,隨機(jī)選名參加某項(xiàng)活動(dòng),求選取的人恰有一人成績(jī)不低于分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段AB的端點(diǎn)B的坐標(biāo)為(3,0),端點(diǎn)A在圓上運(yùn)動(dòng);
(1)求線段AB中點(diǎn)M的軌跡方程;
(2)過(guò)點(diǎn)C(1,1)的直線m與M的軌跡交于G、H兩點(diǎn),當(dāng)△GOH(O為坐標(biāo)原點(diǎn))的面積最大時(shí),求直線m的方程并求出△GOH面積的最大值.
(3)若點(diǎn)C(1,1),且P在M軌跡上運(yùn)動(dòng),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)的直線與軸正半軸和軸正半軸分別交于,
(1)當(dāng)為的中點(diǎn)時(shí),求的方程
(2)當(dāng)最小時(shí),求的方程
(3)當(dāng)面積取到最小值時(shí),求的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了讓貧困地區(qū)的孩子們過(guò)一個(gè)溫暖的冬天,某校陽(yáng)光志愿者社團(tuán)組織“這個(gè)冬天不再冷”冬衣募捐活動(dòng),共有50名志愿者參與.志愿者的工作內(nèi)容有兩項(xiàng):①到各班做宣傳,倡議同學(xué)們積極捐獻(xiàn)冬衣;②整理、打包募捐上來(lái)的衣物.每位志愿者根據(jù)自身實(shí)際情況,只參與其中的某一項(xiàng)工作.相關(guān)統(tǒng)計(jì)數(shù)據(jù)如下表所示:
(1)如果用分層抽樣的方法從參與兩項(xiàng)工作的志愿者中抽取5人,再?gòu)倪@5人中選2人,那么“至少有1人是參與班級(jí)宣傳的志愿者”的概率是多少?
(2)若參與班級(jí)宣傳的志愿者中有12名男生,8名女生,從中選出2名志愿者,用表示所選志愿者中的女生人數(shù),寫(xiě)出隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某圖書(shū)公司有一款圖書(shū)的歷史收益率(收益率=利潤(rùn)÷每本收入)的頻率分布直方圖如圖所示:
(1)試估計(jì)平均收益率;(用區(qū)間中點(diǎn)值代替每一組的數(shù)值)
(2)根據(jù)經(jīng)驗(yàn),若每本圖書(shū)的收入在20元的基礎(chǔ)上每增加元,對(duì)應(yīng)的銷(xiāo)量(萬(wàn)份)與(元)有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷(xiāo)售記錄中抽樣得到如下5組與的對(duì)應(yīng)數(shù)據(jù):
據(jù)此計(jì)算出的回歸方程為
①求參數(shù)的估計(jì)值;
②若把回歸方程當(dāng)作與的線性關(guān)系, 取何值時(shí),此產(chǎn)品獲得最大收益,并求出該最大收益.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐A-BCD中,AB=a,AC=AD=b,BC=CD=DB=c(a>0,b>0,c>0)該三棱錐的截面EFGH平行于AB、CD,分別交AD、AC、BC、BD于E、F、G、H.
(1)證明:AB⊥CD;
(2)求截面四邊形EFGH面積的最大值,并說(shuō)明面積取最大值時(shí)截面的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),拋物線:的焦點(diǎn)為,射線與拋物線相交于點(diǎn),與其準(zhǔn)線相交于點(diǎn),則( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com