【題目】已知,,,,,,記動(dòng)點(diǎn)的軌跡為.

(1)求曲線的軌跡方程.

(2)若斜率為的直線與曲線交于不同的兩點(diǎn)、軸相交于點(diǎn),則是否為定值?若為定值,則求出該定值;若不為定值,請(qǐng)說(shuō)明理由.

【答案】(1);(2)答案見(jiàn)解析.

【解析】分析:(1)根據(jù)向量幾何意義得點(diǎn)為線段的垂直平分線與直線的交點(diǎn),即得 ,再根據(jù)橢圓定義得曲線的軌跡方程. (2) 設(shè),,化簡(jiǎn),再聯(lián)立侄媳婦與橢圓方程,利用韋達(dá)定理代入化簡(jiǎn)即得定值.

詳解:

(1)由可知,為線段的中點(diǎn).由可知,點(diǎn)在直線上. 由可知,.所以點(diǎn)為線段的垂直平分線與直線的交點(diǎn),所以,所以,所以動(dòng)點(diǎn)的軌跡為以為焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓,即,,所以.所以曲線的軌跡方程為.

(2)設(shè),,,則直線的方程為,將代入.

,所以.

,.

所以

是定值3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,,,分別交軸于,兩點(diǎn),為坐標(biāo)原點(diǎn),則的面積之比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列語(yǔ)句中正確的個(gè)數(shù)是( )

,函數(shù)都不是偶函數(shù);

②命題“若,則”的否命題是真命題;

③若為真,則,非均為真;

④已知向量,則“”的充分不必要條件是“夾角為銳角”.

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

如圖,四棱錐P -ABCD的底面是矩形,側(cè)面PAD是正三角形,

且側(cè)面PAD⊥底面ABCD,E 為側(cè)棱PD的中點(diǎn)。

(1)求證:PB//平面EAC;

(2)求證:AE⊥平面PCD;

(3)當(dāng)為何值時(shí),PB⊥AC ?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)為定義在R上的偶函數(shù),且0≤x≤2時(shí),yx;當(dāng)x2時(shí),yf(x)的圖象是頂點(diǎn)為P(3,4)且過(guò)點(diǎn)A(22)的拋物線的一部分.

(1)求函數(shù)f(x)(,-2)上的解析式;

(2)寫出函數(shù)f(x)的值域和單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)fx)滿足fx)=f(2-x),且f(1)=6,f(3)=2.

(1)求fx)的解析式

(2)是否存在實(shí)數(shù)m,使得在[-1,3]上fx)的圖象恒在直線y=2mx+1的上方?若存在,求m的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查觀眾對(duì)某熱播電視劇的喜愛(ài)程度,某電視臺(tái)在甲、乙兩地各隨機(jī)抽取了名觀眾作問(wèn)卷調(diào)查,得分統(tǒng)計(jì)結(jié)果如圖所示.

(1)計(jì)算甲、乙兩地被抽取的觀眾問(wèn)卷的平均分與方差.

(2)若從甲地被抽取的名觀眾中再邀請(qǐng)名進(jìn)行深入調(diào)研,求這名觀眾中恰有人的問(wèn)卷調(diào)查成績(jī)?cè)?/span>分以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】旅游業(yè)作為一個(gè)第三產(chǎn)業(yè),時(shí)間性和季節(jié)性非常強(qiáng),每年11月份來(lái)臨,全國(guó)各地就相繼進(jìn)入旅游淡季,很多旅游景區(qū)就變得門庭冷落.為改變這種局面,某旅游公司借助一自媒體平臺(tái)做宣傳推廣,銷售特惠旅游產(chǎn)品.該公司統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)產(chǎn)品的銷售數(shù)量,用表示活動(dòng)推出的天數(shù),用表示產(chǎn)品的銷售數(shù)量(單位:百件),統(tǒng)計(jì)數(shù)據(jù)如下表所示.

根據(jù)以上數(shù)據(jù),繪制了如圖所示的散點(diǎn)圖,根據(jù)已有的函數(shù)知識(shí),發(fā)現(xiàn)樣本點(diǎn)分布在某一條指數(shù)型函數(shù)的周圍.為求出該回歸方程,相關(guān)人員確定的研究方案是:先用其中5個(gè)數(shù)據(jù)建立關(guān)于的回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).試回答下列問(wèn)題:

(1)現(xiàn)令,若選取的是這5組數(shù)據(jù),已知,請(qǐng)求出關(guān)于的線性回歸方程(結(jié)果保留一位有效數(shù)字);

(2)若由回歸方程得到的估計(jì)數(shù)據(jù)與選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò),則認(rèn)為得到的回歸方程是可靠的,試問(wèn)(1)中所得的回歸方程是否可靠?

參考公式及數(shù)據(jù):對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)分別為, ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)與橢圓的一個(gè)頂點(diǎn)重合,且這個(gè)頂點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形面積為.

(1)求橢圓的方程;

(2)若橢圓的上頂點(diǎn)為,過(guò)作斜率為的直線交橢圓于另一點(diǎn),線段的中點(diǎn)為,為坐標(biāo)原點(diǎn),連接并延長(zhǎng)交橢圓于點(diǎn),的面積為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案