設函數(shù).
(Ⅰ)若,求的最小值;
(Ⅱ)若當,求實數(shù)的取值范圍.
(Ⅰ)1(Ⅱ)

試題分析:(Ⅰ)時,,.
時,;當時,.
所以上單調減小,在上單調增加
的最小值為
(Ⅱ),
時,,所以上遞增,
,所以,所以上遞增,
,于是當時, .
時,由
時,,所以上遞減,
,于是當時,,所以上遞減,
,所以當時,.
綜上得的取值范圍為.
點評:本題第二問用到了對函數(shù)導函數(shù)的再次求導,從而確定導函數(shù)的單調區(qū)間,導函數(shù)的最值導數(shù)值的范圍,進而得到原函數(shù)的單調性,難度較大
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)的圖象C上存在一定點P滿足:若過點P的直線l與曲線C交于不同于P的兩點M(x1, y1),N(x2, y2),就恒有的定值為y0,則y0的值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)在區(qū)間[0,2]上的最大值為     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù)(其中e為自然對數(shù))
(1)求F(x)="h" (x)的極值。
(2)設 (常數(shù)a>0),當x>1時,求函數(shù)G(x)的單調區(qū)間,并在極值存在處求極值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的導函數(shù)為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,則 的值為   (     )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知向量
(Ⅰ)若向量  的夾角為,求的值;
(Ⅱ)若,求的夾角。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如下圖是函數(shù)的大致圖象,則= (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若曲線的某一切線與直線平行,則切點坐標
            ,切線方程為            .

查看答案和解析>>

同步練習冊答案