【題目】英州育才中學(xué)某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與市醫(yī)院抄錄了至月份每月號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料(表):
日期 | 月日 | 月日 | 月日 | 月日 | 月日 | 月日 |
晝夜溫差 | ||||||
就診人數(shù)(個(gè)) |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;
(2)求選取的是月與月的兩組數(shù)據(jù),請(qǐng)根據(jù)至月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;
其中回歸系數(shù)公式,,.
【答案】(1);(2).
【解析】
試題分析:(1)從組數(shù)據(jù)中選取組數(shù)據(jù)共有種情況,每種情況都是等可能出現(xiàn)的,其中抽到相鄰兩個(gè)月的數(shù)據(jù)的情況有種,根據(jù)古典概型概率的求法求解;(2)求出至月份的數(shù)據(jù)的平均數(shù),根據(jù)給出的公式求出相關(guān)系數(shù),即可得到回歸直線方程.
試題解析:(1)設(shè)抽到相鄰兩個(gè)月的數(shù)據(jù)為亊件,因?yàn)閺?/span>組數(shù)據(jù)中選取組數(shù)據(jù)共有種情況,每種情況都是等可能出現(xiàn)的,其中抽到相鄰兩個(gè)月的數(shù)據(jù)的情況有種,所以.
(2)由數(shù)據(jù)求得, 由公式求得,再由,得關(guān)于的線性回歸方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究冬季晝夜溫差大小對(duì)某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如下資料:
組號(hào) | 1 | 2 | 3 | 4 | 5 |
溫差() | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取的是第1組與第5組的兩組數(shù)據(jù),請(qǐng)根據(jù)第2組至第4組的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次,在處每投進(jìn)一球得3分;在處每投進(jìn)一球得2分.如果前兩次得分之和超過3分就停止投籃;否則投第三次.某同學(xué)在處的投中率,在處的投中率為,該同學(xué)選擇先在處投第一球,以后都在處投,且每次投籃都互不影響,用表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為:
0 | 2 | 3 | 4 | 5 | |
0.03 |
(1)求的值;
(2)求隨機(jī)變量的數(shù)學(xué)期望;
(3)試比較該同學(xué)選擇上述方式投籃得分超過3分與選擇都在處投籃得分超過3分的概率的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
某班甲、乙兩名同學(xué)參加l00米達(dá)標(biāo)訓(xùn)練,在相同條件下兩人l0次訓(xùn)練的成績(jī)(單位:秒)如下:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
甲 | 11.6 | 12.2 | 13.2 | 13.9 | 14.0 | 11.5 | 13.1 | 14.5 | 11.7 | 14.3 |
乙 | 12.3 | 13.3 | 14.3 | 11.7 | 12.0 | 12.8 | 13.2 | 13.8 | 14.1 | 12.5 |
(I)請(qǐng)作出樣本數(shù)據(jù)的莖葉圖;如果從甲、乙兩名同學(xué)中選一名參加學(xué)校的100米比賽,從成績(jī)的穩(wěn)定性方面考慮,選派誰(shuí)參加比賽更好,并說明理由(不用計(jì)算,可通過統(tǒng)計(jì)圖直接回答結(jié)論).
(Ⅱ)從甲、乙兩人的10次訓(xùn)練成績(jī)中各隨機(jī)抽取一次,求抽取的成績(jī)中至少有一個(gè)比12.8秒差的概率.
(Ⅲ)經(jīng)過對(duì)甲、乙兩位同學(xué)的多次成績(jī)的統(tǒng)計(jì),甲、乙的成績(jī)都均勻分布在[11.5,14.5]
之間,現(xiàn)甲、乙比賽一次,求甲、乙成績(jī)之差的絕對(duì)值小于0.8秒的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在矩形中,,點(diǎn)是的中點(diǎn),將沿折起到的位置,使二面角是直二面角.
(1)證明: ;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為實(shí)數(shù)且.
(1)設(shè)函數(shù).當(dāng)時(shí),在其定義域內(nèi)為單調(diào)增函數(shù),求的取值范圍;
(2)設(shè)函數(shù).當(dāng)時(shí),在區(qū)間(其中為自然對(duì)數(shù)的底數(shù))上是否存在實(shí)數(shù),使得成立,若存在,求實(shí)數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,以原點(diǎn)O為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓相交于、兩點(diǎn),且,求證:的面積為定值并求出定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在單調(diào)遞增數(shù)列中, ,且成等差數(shù)列, 成等比數(shù)列,.
(1)①求證:數(shù)列為等差數(shù)列;
②求數(shù)列通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com