在長(zhǎng)方體中,,過、、三點(diǎn)的平面截去長(zhǎng)方體的一個(gè)角后,得到如圖所示的幾何體,且這個(gè)幾何體的體積為

(1)求棱的長(zhǎng);
(2)若的中點(diǎn)為,求異面直線所成角的大。ńY(jié)果用反三角函數(shù)值表示).

(1)3(2)

解析試題分析:解:(1)設(shè),由題設(shè),
,即,解得
的長(zhǎng)為
(2)因?yàn)樵陂L(zhǎng)方體中//,所以即為異面直線所成的角(或其補(bǔ)角).
在△中,計(jì)算可得,則的余弦值為,
故異面直線所成角的大小為
考點(diǎn):異面直線所成的角
點(diǎn)評(píng):求異面直線所成的角,可通過轉(zhuǎn)化為共面直線所成的角來求解,有時(shí)也可通過向量來求。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面是矩形,四條側(cè)棱長(zhǎng)均相等.

(1)求證:平面;
(2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知長(zhǎng)方形ABCD中,AB=2,A1,B1分別是AD,BC邊上的點(diǎn),且AA1=BB1="1," E,F(xiàn)分別為B1D與AB的中點(diǎn). 把長(zhǎng)方形ABCD沿直線折成直角二面角,且.

(1)求證:
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱柱中,平面,底面是邊長(zhǎng)為1的正方形,側(cè)棱,


(Ⅰ)證明:;
(Ⅱ)若棱上存在一點(diǎn),使得,
當(dāng)二面角的大小為時(shí),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面是正方形, ,分別為的中點(diǎn),且.

(1)求證: ;
(2)求異面直線所成的角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖是一個(gè)直三棱柱(以A1B1C1為底面)被一平面
所截得到的幾何體,截面為ABC.已知A1B1=B1C1=l,∠AlBlC1=90°,
AAl=4,BBl=2,CCl=3,且設(shè)點(diǎn)O是AB的中點(diǎn)。

(1)證明:OC∥平面A1B1C1;
(2)求異面直線OC與AlBl所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐A-BCD中,△ABD和△BCD是兩個(gè)全等的等腰直角三角形,O為BD的中點(diǎn),且AB=AD=CB=CD=2,AC=

(1)當(dāng)時(shí),求證:AO⊥平面BCD;
(2)當(dāng)二面角的大小為時(shí),求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.

(Ⅰ) 證明:PA⊥BD;
(Ⅱ) 若PD=AD,求二面角A-PB-C的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截面得,已知FA⊥平面ABC,AB=2,BD=1,AF=2, CE=3,O為AB的中點(diǎn).

(1)求證:OC⊥DF;
(2)求平面DEF與平面ABC相交所成銳二面角的大小;
(3)求多面體ABC—FDE的體積V.

查看答案和解析>>

同步練習(xí)冊(cè)答案