【題目】如圖,在四棱錐 中,底面ABCD是菱 形,PA=PB,且側(cè)面PAB⊥平面ABCD,點E是AB的中點.

(1)求證:PE⊥AD;
(2)若CA=CB,求證:平面PEC⊥平面PAB.

【答案】
(1)證明:因為PA=PB,點E是棱AB的中點,所以PE⊥AB,

因為平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB 平面PAB,所以PE⊥平面ABCD,

因為 平面ABCD,所以PE⊥AD.


(2)證明:因為CA=CB,點E是AB的中點,所以CE⊥AB.

由(1)可得PE⊥AB,又因為 ,所以AB⊥平面PEC,

又因為 平面PAB,所以平面PAB⊥平面PEC.


【解析】(1)線線垂直的關(guān)鍵是判斷線面垂直,根據(jù)平面PAB⊥平面ABCD,可得PE⊥平面ABCD,可得;
(2)面面垂直的關(guān)鍵是線面垂直,根據(jù)PE⊥AB,PE⊥AD,可得。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=kax﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函數(shù)又是增函數(shù),則函數(shù)g(x)=loga(x+k)的圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某位同學(xué)在2015年5月進行社會實踐活動,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進行分析研究,他分別記錄了5月1日至5月5日的白天平均氣溫x(°C)與該奶茶店的這種飲料銷量y(杯),得到如下數(shù)據(jù):

5月1日

5月2日

5月3日

5月4日

5月5日

平均氣溫x(°C)

9

10

12

11

8

銷量y(杯)

23

25

30

26

21


(1)若從這五組數(shù)據(jù)中隨機抽出2組,求抽出的2組數(shù)據(jù)不是相鄰2天數(shù)據(jù)的概率;
(2)請根據(jù)所給五組數(shù)據(jù),求出y關(guān)于x的線性回歸方程 = x+
(參考公式: = , =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足a1=1, ,其前n項和為Sn , 則
(1)a5=;
(2)S2n=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個不重合的平面α,β和兩條不同直線m,n,則下列說法正確的是( )
A.若m⊥n,n⊥α,mβ,則α⊥β
B.若α∥β,n⊥α,m⊥β,則m∥n
C.若m⊥n,nα,mβ,則α⊥β
D.若α∥β,nα,m∥β,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P-ABCD的體積為 ,其三視圖如圖所示,其中正視圖為等腰 三角形,側(cè)視圖為直角三角形,俯視圖是直角梯形.

(1)求正視圖的面積;
(2)求四棱錐P-ABCD的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需要增加投入100元,最大月產(chǎn)量是400臺.已知總收益滿足函數(shù) ,其中x是儀器的月產(chǎn)量(單位:臺).
(1)將利潤y(單位:元)表示為月產(chǎn)量x(單位:臺)的函數(shù);
(2)當月產(chǎn)量為何值時,公司所獲得利潤最大?最大利潤為多少?(總收益=總成本+利潤).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2mx+10(m>1).
(1)若f(m)=1,求函數(shù)f(x)的解析式;
(2)若f(x)在區(qū)間(﹣∞,2]上是減函數(shù),且對于任意的x1 , x2∈[1,m+1],|f(x1)﹣f(x2)|≤9恒成立,求實數(shù)m的取值范圍;
(3)若f(x)在區(qū)間[3,5]上有零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lg(ax2+ax+2)(a∈R).
(1)若a=﹣1,求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)的定義域為R,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案