函數(shù)f(x)=x3+ax2+bx-2的圖象在與y軸交點的切線方程為y=x+a.
(1)求函數(shù)f(x)的解析式;
(2)設函數(shù)存在極值,求實數(shù)m的取值范圍.
【答案】分析:(1)利用切點為(0,-2)和f′(0)=1可得a,b,進而求出函數(shù)的解析式.
(2)轉化為g′(x)=0有實根.根據判別式求出對應的根,再找函數(shù)的極值即可.
解答:解:(1)由已知可得切點為(0,-2),所以a=-2,
又因為f′(x)=3x2+2ax+b,
所以f′(0)=b=1.
所以函數(shù)解析式為f(x)=x3-2x2+x-2.
(2)由(1)可得:g(x)=x3-2x2+x-2+mx,
所以g′(x)=3x2-4x+1+,令g′(x)=0.
當函數(shù)有極值時,方程3x2-4x+1+=0有實根,即△≥0,
由△=4(1-m)≥0,得m≤1.
①當m=1時,g′(x)=0有實根x=,在x=左右兩側均有g′(x)>0,故函數(shù)g(x)無極值.
②當m<1時,g′(x)=0有兩個實根,
x1=(2-),x2=(2+),
當x變化時,g′(x)、g(x)的變化情況如下表:
故在m∈(-∞,1)時,函數(shù)g(x)有極值;當x=(2-)時,g(x)有極大值;當x=(2+) 時,g(x)有極小值.
點評:本題考查利用導函數(shù)來研究函數(shù)的極值.在利用導函數(shù)來研究函數(shù)的極值時,分三步①求導函數(shù),②求導函數(shù)為0的根,③判斷根左右兩側的符號,若左正右負,原函數(shù)取極大值;若左負右正,原函數(shù)取極小值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-x3+ax2+bx+c在(-∞,0)上是減函數(shù),在(0,1)上是增函數(shù),函數(shù)f(x)在R上有三個零點.
(1)求b的值;
(2)若1是其中一個零點,求f(2)的取值范圍;
(3)若a=1,g(x)=f′(x)+3x2+lnx,試問過點(2,5)可作多少條直線與曲線y=g(x)相切?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•東城區(qū)一模)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=1處的切線l不過第四象限且斜率為3,又坐標原點到切線l的距離為
10
10
,若x=
2
3
時,y=f(x)有極值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•寧波模擬)已知函數(shù)f(x)=x3+ax2-a2x+2,a∈R.
(1)若a<0時,試求函數(shù)y=f(x)的單調遞減區(qū)間;
(2)若a=0,且曲線y=f(x)在點A、B(A、B不重合)處切線的交點位于直線x=2上,證明:A、B 兩點的橫坐標之和小于4;
(3)如果對于一切x1、x2、x3∈[0,1],總存在以f(x1)、f(x2)、f(x3)為三邊長的三角形,試求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x3-3ax+b(a≠0),已知曲線y=f(x)在點(2,f(x))處在直線y=8相切.
(Ⅰ)求a,b的值;
(Ⅱ)求函數(shù)f(x)的單調區(qū)間與極值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)=x3+ax2-x+1的極值情況,4位同學有下列說法:甲:該函數(shù)必有2個極值;乙:該函數(shù)的極大值必大于1;丙:該函數(shù)的極小值必小于1;。悍匠蘤(x)=0一定有三個不等的實數(shù)根. 這四種說法中,正確的個數(shù)是(  )

查看答案和解析>>

同步練習冊答案