已知函數(shù)f(x)=-x3+ax2+bx+c在(-∞,0)上是減函數(shù),在(0,1)上是增函數(shù),函數(shù)f(x)在R上有三個(gè)零點(diǎn).
(1)求b的值;
(2)若1是其中一個(gè)零點(diǎn),求f(2)的取值范圍;
(3)若a=1,g(x)=f′(x)+3x2+lnx,試問過點(diǎn)(2,5)可作多少條直線與曲線y=g(x)相切?請(qǐng)說明理由.
分析:(1)由f(x)=-x3+ax2+bx+c,知f'(x)=-3x2+2ax+b,由f(x)在(-∞,0)上是減函數(shù),在(0,1)上是增函數(shù),能求出b的值.
(2)由f(x)=-x3+ax2+c,知f(1)=0,c=1-a,由f′(x)=-3x2+2ax=0的兩個(gè)根分別為x1=0,x2=
2a
3
,能求出f(2)的取值范圍.
(3)g(x)=2x+lnx,設(shè)過點(diǎn)(2,5)與曲線g (x)的切線的切點(diǎn)坐標(biāo)為(x0,y0),推導(dǎo)出lnx0+
2
x0
-2=0
,構(gòu)造函數(shù)h(x)=lnx+
2
x
-2,能推導(dǎo)出過點(diǎn)(2,5)可作2條切線.
解答:解:(1)∵f(x)=-x3+ax2+bx+c,
∴f'(x)=-3x2+2ax+b,
∵f(x)在(-∞,0)上是減函數(shù),在(0,1)上是增函數(shù),
∴當(dāng)x=0時(shí),f(x)取到極小值,即f(0)=0.
∴b=0.
(2)由(1)知f(x)=-x3+ax2+c,
∵1是函數(shù)f(x)的一個(gè)零點(diǎn),即f(1)=0,
∴c=1-a,
∵f′(x)=-3x2+2ax=0的兩個(gè)根分別為x1=0,x2=
2a
3

f(x)在(0,1)上是增函數(shù),且函數(shù)f(x)在R上有三個(gè)零點(diǎn),
x2=
2a
3
>1
,解得a>
3
2
,
∴f(2)=-8+4a+(1-a)=3a-7>-
5
2
,
∴f(2)的取值范圍是(-
5
2
,+∞).
(3)g(x)=2x+lnx
設(shè)過點(diǎn)(2,5)與曲線g (x)的切線的切點(diǎn)坐標(biāo)為(x0,y0),
∴y0-5=g′(x0)(x0-2),
2x0+lnx0-5=(2+
1
x0
)(x0-2)
,
lnx0+
2
x0
-2=0
,…(10分)
令h(x)=lnx+
2
x
-2,
∴h′(x)=
1
x
-
2
x2
=0
∴x=2,
∴h(x)在(0,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增
又∵h(yuǎn)(
1
2
)=2-ln2>0,h(2)=ln2-1<0,h(e2)=
2
e2
>0,
∴h(x)與x軸有兩個(gè)交點(diǎn)
∴過點(diǎn)(2,5)可作2條曲線y=g(x)的切線.…(13分)
點(diǎn)評(píng):本題考查滿足條件的實(shí)數(shù)值的求法,考查函數(shù)值的取值范圍的求法,考查函數(shù)的切線方程的條數(shù)的判斷.綜合性強(qiáng),難度大,對(duì)數(shù)學(xué)思維能力要求較高.解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)、分類討論思想、等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對(duì)稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案